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PREFACE

This handbook is submitted by Lockheed Missiles & Space Company to the National

Aeronautics and Space Administration Manned Spacecraft Center in partial fulfill-

ment of the requirements of contract number NAS 9-5174. The handbook treats liquid

propellant shape, sloshing behavior, stability, reorientation behavior, draining and

vortexing, and heat transfer problems with emphasis on low-g aspects of these

problems. The design procedures for passive liquid-retention systems for storable

propellants are also included as in a discussion on experimental techniques useful in

the study of low-g liquid propellant behavior.

Other reports submitted under this contract include:

"A Study of Liquid Propellant Behavior During Periods of

Varying Acceleration" Final Report, LMSC-A874728

"A Study of Liquid Propellant Behavior During Periods of

Varying Acceleration" Summary Report, LMSC-A874729

"The Literature of Low-g Liquid Propellant Behavior,"

LMSC-A874830

The authors wish to acknowledge the contribution in part of the pressurant pull-through

analysis in Section 6 by Dr. Gary D. Bizzell. This analysis was prepared in connec-

tion with other review work at LMSC and adapted for use in this handbook.
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Section 1

INTRODUCTION

This handbook has been prepared to assist engineers working on propulsion and vehicle

dynamics of rocket propelled space vehicles to predict the behavior of liquids in rocket

propellant tanks. Low-g liquid behavior has been emphisized in preparing this hand-

book. It is important that the probable behavior of liquids be recognized. Once this

is done, propulsion or control system designers need quantitative information about

this behavior. It is the central purpose of this handbook to explain clearly how liquids

behave in rocket propellant tanks and to provide tools for the solution of the more

important types of liquid behavior problems.

The contents of this work have been subdivided according to the types of liquid be-

havior occurring in the propellant tanks of space vehicles. The following launch and

operation sequence description serves to illustrate the categorization of rocket pro-

pellant behavior.

• The launching of a space vehicle requires the use of gimbaUed main engines

of the booster to keep the vehicle on course. This results in lateral sloshing

of the liquids in all tanks of the vehicle.

• Booster or upper stage engine cutoff is followed by the release of strain

energy stored in the walls of propellant tanks. The strain energy is caused

by the hydrostatic pressure (in addition to the static pressure caused by tank

pressurization) of the tanked liquids. Rapid release of this results in some,

although normally slight, axisymmetric motion of the liquid free surface.

• Booster or upper stage engine shutdown also means that the space vehicle is

in a state of free fall. Forces acting on the vehicle are greatly reduced and

the acceleration of the liquid relative to the vehicle treated as a single-

particle results in greatly reduced body forces acting on the liquid. The

shape of the liquids in the propellant tanks will change since capillary forces,

insignificant prior to engine shutdown, may now be dominant.

l-I
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• Injection of a space vehicle into low altitude orbit may result in a deceler-

ation drag force on the vehicle strong enough to reorient the liquids to the

forward ends of their tanks. It is well known that capillary forces, when

dominant, can hold or stabilize liquids in a nonminimum energy location.

The location of liquids in propellant tanks subject to small extraneous forces

is in question.

• Lateral sloshing of the propellants during ascent caused by operation of an

ascent attitude control system implies that considerable kinetic energy may

be present. Depending on the timing of engine shutdown relative to the

sloshing cycle, this residual kinetic energy can result in extremely high

amplitude liquid motion after engine shutdown.

• Operation of an orbital attitude control system will result in the lateral

sloshing of liquids under conditions in which surface tension and wetting

properties of the liquid control the liquid free surface shape. Baffles in

tanks can be expected to have a much different effect on liquid sloshing

motion under such conditions.

• Engine restart requires that liquid propellants be located at tank drains.

Positioning propellants by means of auxiliary rockets is one of the accepted

ways of assuring proper liquid positioning. Operation of such devices gen-

erally results first in reorientation of liquid in a wall bound sheet accom-

panied by the forward migration of a large central bubble. A central tran-

sient jet motion counter to the reorientation flow is subsequently observed

under many conditions. Entrainment of ullage gas bubbles in liquid collected

at the tank drain is also observed. Knowledge of forces imposed by reori-

entation flows on baffles is important in the baffle design. Detailed know-

ledge of the overall liquids reorientation behavior of liquids is important to

the minimization of impulse propellants required for propellant settling.

• Other methods for holding liquid propellants against tank drains are avail-

able. One particularly suited for use with space storable propellants makes

use of the surface tension property of the propellants.

• The draining of rocket tanks under low-g conditions presents special prob-

lems. Rapid draining of tanks under low-g conditions can result in the

1-2
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t

disruption of the free surface over the drain with consequent extrapment of

large residual quantities.

Heat transfer to propellants is not normally as important to the designer of

storable rocket systems as it obviously is to the cryogenic system designer.

Knowledge of propellant temperatures can be useful, however, in determin-

ing pressurant quantity requirements, and is especially important when

orbital engine restarts are considered.

The material in this work has been assembled with two major purposes in mind. The

first is to provide a theoretical introduction to the fluid mechanics phenomena being

treated. The purpose here is to provide a bridge to more detailed works in fluid

mechanics which the worker with deeper theoretical interest can use in establishing

a full understanding of the liquid behavior being treated here. This handbook is not a

text in fluid mechanics. The user should use his own choice of reference for the the-

oretical development of the basic equations of fluid mechanics. The purpose here is

to help in applying available information to problems posed by low-g liquid propellant

behavior.

The second purpose is to collect all of the information available about low-g fluid

mechanics for the use of propulsion system designers as well as those responsible

for development. Details of the solution of theoretical problems are not presented,

but rather the methods used are outlined in enough detail to give those less familiar

with the techniques of mathematical analysis an appreciation of the steps involved.

Compact, closed form solutions are included in some detail and are used primarily

to point out the physical significance of the parameters of the solution to more general

problems may be obtained therefrom.

An attempt is made to collect for use enough information to determine the force inter-

action between liquids in motion and their containers. An appreciation of the forces

involved is a necessary bridge for communications between the propulsion system

designer and the guidance and control system designer.

1-3
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The following material has been organized into sections each treating a separate

subject. Each section is complete with figures and references. An attempt has been

made to unify the nomenclature throughout the handbook, but the symbols are defined

in-text in each section.

There now exist several summaries about hydrostatics and hydrodynamics in reduced

g situations. (See for example Reference 2 in Section 2.) This handbook supplements

these works in a manner which, it is hoped, will assist the propulsion system designer.

The recent publication of NASA SP106 (The Dynamic Behavior of Liquids in Moving

Containers, H. N. Abramson, ed., 1966) renders unnecessary the inclusion of

standard, high-g sloshing and other dynamic behavior information in this handbook.

1-4
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Section 2

PROPELLANT FREE SURFACE SHAPE

The location and shape of a quantity of liquid propellants in ordinary gravitational

conditions is intuitively obvious. The liquid in a container seeks a location and shape

characterized by minimum potential energy. The interface shape normally observed

is a plane perpendicular to the local direction of gravitational body forces acting on the

liquid. In earlier days of space vehicle design, the shape of liquid propellants in

rocket tanks was the subject of much conjecture. It has since been well established

that the wetting characteristics of most propellants will cause them to wet additional

tank wall when body force levels are very greatly reduced; The liquid in a rocket

propellant tank seeks a location and shape which results in minimum total potential

energy for the volume of liquid.

THE DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS

The shape of the free surface of liquid propellants in most rocket tanks can be deter-

mined from the solution of an easily derived differential equation. Consider the

geometry in Figure 2-1. Here liquid is located in a container of revolution. The

axial symmetry of this problem allows considerable simplification of the differential

equation and its derivation. Nevertheless, the example is useful because of the wide

applicability of results. The r, z coordinate system is located at the axis of the

cylinder where the vertex of the meniscus intersects the axis. The unbalanced

vertical component of pressure forces acting across a differential ring in the free

surface is balanced by the net vertical component of surface tension forces. This is

described as follows:

rf-
d r dr

(pg - p) 2rrrdr = 2_radr _/1+-_2
r

2-1
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where cr is the surface tension of liquid. After cancellation this reduces to

_-f_
1 d r

Pg - p -
Y dY 1/1 + f-2

r
(2.1)

The pressure at any radius _ is given by the following relation.

I

p = pg - (pg - po) - pgf (2.2)

Substitution of Eq. (2.1) into (2.2) results in the following differential equation

_f-
d r

pgf - f---(0) = 0
rr

subject to boundary conditions at the axis and at the wall

f-r(O) = -fr(n) - cot (0 + cp) - 0 (2.3)

Nondimensionalization of Y and f using

r = r/R , f = f-/n

results in the following form for this equation and the associated boundary conditions.

1 d rf r
Bf - f (0) = 0

r dr _ + f2r rr
(2.4)

fr(O) = fr(1) - cot (0 + ¢) = o

2-2
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Here r runs from 0 to 1. The coefficient B to the second term is defined

B = pgR2/_ , where p is the density of the liquid. It can be exptected that the shape

of the meniscus will be determined by the value of the Bond number and by the

edge angle (0 + _ ) which is involved in one of the boundary conditions for the

differential equation. This equation is nonlinear, and, further, cannot be transformed

into one with a closed-form solution. Numerical values must be obtained by numeri-

cally integrating the equation.

DISCUSSION OF AVAILABLE SOLUTIONS

Partial results are available in the literature for meniscus shapes in:

• Axisymmetric containers with no internal surfaces such as cylinder, spheres,

cones and ellipses such that the meniscus intersects the axis of the tank per-

pendicularly. The shapes computed cannot be applied where nonaxisymmetric

baffles are used. Reynolds (2.1) has performed calculations applicable to many

cases of interest. These results in working chart form enable developing men-

iscus location and wall rise height information and liquid volume for any

axisymmetric tank shape. Specific information relative to spherical tanks

has been extracted from this work and is presented in Figure 2-2 as an

illustration. Liquid depth under the meniscus in a spherical tank and

meniscus wall height are presented as a function of normalized liquid volume

with tank volume Bond number as a parameter for zero contact angle.

• Annular cylindrical tanks with both inner and outer walls being circular

cylinders. Results for contact angles of zero degrees are presented in

Figure 2-3 where use height on the outer and inner walls and the maximum

depression, all referenced to mean liquid level ,are plotted. Computations for

other contact angles have been carried out (2" 2) but are not included because

of their limited utility.

Note that for small diameter inner cylinders, the central region of the

meniscus is not greatly distorted by the presence of the center body. As

2--3
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the size of the center body grows, the shape of the meniscus spanning the gap

becomes more symmetrical about a surface bisecting the gap. This observation

applies qualitatively to the shape of the meniscus spanning between a cylindrical

center body and any axisymmetric tank, except for the effect of the outer tank

shape on the shape of the meniscus.

LIMITING CASES FOR THE MENISCUS SHAPE

A number of additional observations may be made concerning solutions to the equations

just given. These involve behavior of the solution for limiting conditions. First, for

B = 0 the differential equation becomes that for a circle and can be integrated directly

to obtain the free surface shape.

1
f =

cos(O + _) [j 21 - 1 - 2 r
cos (0 + (;)

(2.5)

Second, the shape calculated from the differential equation for small Bond numbers

departs very little from the shape for a circular arc. For example even for B = 1,

the departure of the free surface shape at the wall for 0° edge angle (0 + q_) is only

about 11 percent. Third, for very large values of B, the differential equation preducts

very flat surfaces with small slopes except very close to the wall. Wall rise heights

for large Bond number ( > 100,say) can be obtained quite adequately using an asymptotic

formula developed by Rayleigh.

2
cos (0 + ¢) + 5-6

i - cos 3

sin

B = 0, of course, occurs in a practical sense when body forces are zero. Small Bond

numbers will obtain if the body force levels are small or if the characteristics length

2-4
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for the problem at hand is small. In the latter case, for example, the characteristic

dimension for a capillary surface can be small even though the tank diameter is large.

An illustration is found in an annular cylindrical tank, i.e., two concentric cylinders

closely spaced. If the separation distance is very small, the section of the meniscus

spanning the gap will be nearly circular, even though the tank may be very large and

the gravity level high

APPROXIMATIONS TO THE MENISCUS SHAPE

From the foregoing it is evident that free surface shapes for zero or small Bond

numbers may be substituted with reasonable accuracy by circles or ellipses (2" 3) For

Bond numbers less than 10, a spheroidal surface (ellipsoid of revolution) is quite

acceptable for many purposes. The equation for the proper ellipse is obtained by

first choosing an ellipse which satisfies the contact angle condition at the tank wall

and then matching the hydrostatic pressure difference'between the limb of the meniscus

and its vertex. Results of this type of analysis are included in Figure 2-4. Compared

with the exact solution of the differential equation, the approximation is best for

smaller Bond numbers and is in fact exact for B = 0. The approximation is also

better for larger contact angles.

The agreement between theory and experimental measurements made of meniscuses in

small cylinders can be seen in Figure 2-5. Agreement is reasonable in spite of the

experimental difficulties associated with measuring the contact angle and the exact

intersection point between the meniscus and the cylinder wall (all these being aggra-

vated by refraction at the cylindrical walls of the model).

There now exists a large literature concerning the capillary liquid free-surface shape.

Much of the existing literature, though, was prepared before digital computers were

available for the numerical integration of differential equations. Thus, the numerical

information available until recently was not great. The interested reader is referred

to the reference list in Chapter 11 of NASA SP 106 (2. 4) or to the separated bibliography

accompanying this work (2" 5)

2-5
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Figure 2-1 Geometry -- Meniscus in a Container of Revolution
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Figure 2-2 Configuration Parameters for Liquid in a Spherical Tank, Contact

Angle, O = 0
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Figure 2-3 Annular Interface Shape Parameters
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BOND NUMBER, pgR2/o "

Figure 2-4 Meniscus Rise Height Ratio as a Function of Bond Number

and Contact Angle
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Fig. 2-5 Comparison of Theoretical Meniscus Shapes With Ellipsoidal

Approximations and Experimental Data
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Section 3

LOW-G LATERAL SLOSHING OF ROCKET PROPELLANTS

The oscillation of liquids in cavities has been a subject of interest to mathematicians

and scientists for about 100 years, and its is of special importance today in the design

of rocket propelled space vehicles. If a liquid rocket is properly designed, the pro-

pellant load comprises a large fraction of the total vehicle mass. Oscillations which

take place in liquid propellants, therefore, can be of extreme importance in the design

of the propulsion and control systems.

DEVELOPMENT OF THE BOUNDARY EIGENVALUE PROBLEM FOR NORMAL
MODE SLOSHING

Liquid propellants used heretofore have been liquids of low viscosity. Most of the

theory associated with sloshing has assumed that the liquids are inviscid, and this is

a satisfactory assumption for most conditions. Further, the compressibility of most

liquids is very low. These facts, in short, make the assumptions of incompressible,

inviscid, and irrotational liquid behavior quite reasonable.

The governing relation for sloshing in liquid propellant tanks is thus Laplace's equation,

the equation of continuity. The solution to this equation must be determined consistent

with appropriate boundary conditions at solid walls and the free surface. The boundary

condition at solid walls consistent with the assumption of inviscid behavior is that the

velocity of the liquid normal to the tank walls is zero. The pressure at the free surface

provides another boundary condition which can be drawn from Bernoulli's equation

applied at the free surface. (This equation holds throughout the liquid except that the

pressure is known only on the free surface. ) When surface tension is important in the

sloshing problem, the pressure of the liquid at the liquid-gas interface is related to

the gas pressure through the surface tension property of the liquid and the curvature

of the interface. This is detailed in the following developmenL

3-1
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The geometry used for the formulation of the lateral sloshing problem is shown in

Figure 3-1. The polar cylindrical (Y, _, 0) coordinate system is chosen as being

most appropriate for sloshing in containers of revolution. Solid walls are denoted

by W and the free surface by _ . In general, the liquid meets the wall so as to

satisfy the contact angle (O) condition at radius R. The magnitude of the downward body

body force acting per unit mass of fluid is g.

The governing equation for the problem Laplace's equation, (the equation of continuity)

written in terms of a velocity potential ' (p , is

v2 = 0__ + ! _ + 1 02_ + _ = 0 (3.1)
- -2 -2

0_ 2 r aT r 002 0

with the velocity potential defined by radial, angular, and axial velocity

components

u
0_

8o

0z

(3.2)

The zero normal flow velocity condition at solid walls is given by

on w (3.3)

The boundary condition applied for the free surface may be obtained from the

nonsteady Bernoulli equation on

P + (Wp)2 + g-_ = _ on s
p OY
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The liquid pressure in the free surface is related to the gas pressure above the free

surface by the relation

Pg - P = ffJ (3.4)

where the total curvature of the free surface J is

D

1 a r s_ 1 a sO
= + -- 2 aO (3.5)

J _ a_l s2 1 -2 r _/1 _2r2 1 -2+ _ +_-2s 0 + +_--_ s 0
r r r

Without loss of generality, F (t) in the Bernoulli equation can be set equal to a

constant; for convenience this will be chosen to be the liquid pressure at the vertex of

the equilibrium liquid surface divided by the liquid density, i.e. po/p . Bernoulli's

equation is then

P + (Vq_)2 + gs+ _ Po
p at = 7

The use of Equation (3.4) relating liquid and gas pressure can then be used to arrive

at the following free surface boundary condition.

-_J + (V_)2 + g_+ _ = APo (3.6)
P a_ P

where Ap is the pressure difference between the gas and the liquid at the vertex of

the equilibrium meniscus. The velocity potential in this equation must be related to

the motion of the free surface itself by means of a kinematic condition. Consider

s = s(r, 0,_). The total derivative of s with respect to t is given by

ds as dr 1 as aO as
-- + +_

dt a_ dt r a O Ot O_
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Here the total derivatives ds/dt , dr/dt and r (as/a0) are the velocity components

w, u, and v, respectively. The definition of the velocity potential may now be

employed to obtain the usual form of the kinematic condition

The lateral sloshing problem is completely posed by equations (3.1), (3.3), (3.6), and

(3.7) subject to an additional constraint relative to the behavior of the contact angle.

Although this has not been finally demonstrated, it appears that the contact angle may

satisfactorily be described as not varying dynamically, but remaining constant.

It can be seen that foregoing problem is nonlinear. Laplace's equation and the wall

boundary condition are linear, but the first two terms in the free surface boundary

condition and the kinematic condition are nonlinear. If analysis is limited to small

oscillations of the free surface, the velocity squared term can be dropped from the

Bernoulli equation and the first term accounting for surface tension effects can be

linearized by defining the free surface shape s as the sum of the equilibrium surface

-f and a perturbation h. When this is substituted and the algebra carried out, the free

surface boundary condition and the kinematic condition become

8 rh9 1 ho_o - gh _ - 0
P 8Y -- 3 + _2 at

¢1+ f -2 r Vl + r21

(3. s)

8t- a_ OY dY
(3.9)

The condition usually applied to the behavior of the contact angle is that it remain

constant, i.e. 8h/Sr = 0 at r = R .
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The problem formulated by equations (3.1), (3.3), (3.8) and (3.9) is now linear.

However, the container shape and free surface geometry make the solution to this

problem quite difficult. Numerical analysis or methods of applied mathematics

must be used, both of which require use of digital computer equipment.

DEVELOPMENT OF A MECHANICAL ANALOG FOR NORMAL MODE SLOSHING

The forces and moments caused by liquid sloshing in rocket propellant tanks can be

calculated from knowledge of the velocity potential. The pressure at any point in the

liquid is given by the unsteady Bernoulli equation.

2

P+ 2_-+ gz+ _-E_= C(t)
P 0t

When the liquid is at rest q = _ = a_/a}- = 0. So

P+gz = c IP

On the equilibrium surface f (see Figure 3-1)

p = pg ¢r

rf-
i a r

r

thus

Pg + g_ o" 1 a rfr = C (3.10)

P P_ a_ _ 1
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When the liquid is sloshing, the pressure in the free surface (z = f- + h) is

1 a [_]_irfr rh_
7 aF + _-2r V _ +-_2r

Using the immediately preceeding relation,

1 O0
+

-2

r _/_ -9+ fZ
r

+ + =
at-

c(t)

i O r h_ i • h00

C1 P r 07 _1 +?2r 3 + __2r +?2r + gh + q0t

= C(t)

Equation (3.8) can be used here to simplify this to

C 1 = C (t)

Thus,

P = C l - g_- _-_ (3.11)P a_-

The first two terms on the right side of this equation give the hydrostatic pressure

in the liquid, partly contributed by the gravitational body force and partly by the

effect of surface tension. The last term on the right gives the dynamic perturbation

pressure caused by small amplitude oscillation of the free surface.

Now, the forces and moments caused by the sloshing motion can be calculated. The

lateral force exerted can be found by evaluating the integral
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X

2_

=f
O

_ f p sin _ cos 0 _w d_ dO
_=o

w (3.12)

o

This integral is obtained because the usual form of the velocity potential for lateral

sloshing is _0 (r, z, 0,-t) = _o (r, z, t ) cos 0. The integral involving the first two

terms in (3.11), the expression for pressure, vanishes in the integration with respect

to 0.

The moment of the dynamic pressure forces on the tank is obtained from the following

integral.

_o

My-- = - w f f sin fl rw Zw d_ (3.13)

8o

The velocity potential for these calculations should be expressed in the form

h- _0(r, z) cos 0cos_t
W

q) = - (3.14)

r=tl

This is obtained through use of (3.9), the kinematic condition, with the requirement

that the maximum value of h(R, t) be h The ratio of these integrals determines
W

the action point of an equivalent force on the tank.

= --_ (3.15)

X
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The parameters for a mechanically equivalent spring-mass oscillator can be determined

from expressions for the maximum force imposed by and the maximum potential energy

stored in the oscillator

F = kx
x

The constant of the equivalent spring is obtained by eliminating x between these.

2

_ x (3.16)

The magnitude of the equivalent mass in the oscillator is obtained from

_ 2
_ x (3.17)-_ - -2 2

w 2w V

In these expressions, the maximum potential energy can be obtained from the following

integral

f

2 J O_

E quilibrium
free -surface

where dE is an elemental area in the equilibrium surface.

NORMALIZATION OF THE PROBLEM AND THE MECHANICAL ANALOG

For calculation purposes, it is useful to nondimensionalize all of the preceeding relations

by first separating time from the problem and then using the following definitions:
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r

r z f s i1
R ' z = _ ' f = R , s = R ' h = R ' _ = R

t =_i(1 + B) pR 3

(7

(3.18)

The linearized, normal-mode sloshing problem becomes

V2 4) _ 024, + 1 a____+ __1 a2_____
2Or 2 r Or r 04, 2

a2_
+_ = 0

3z 2
(3. la)

0_
- 0

On on w (3.3a)

1 a r h r 1 h0o
+

-r + r

Bh - (i + B) w2@ = 0 (3.8a)

Oh a@ a@ df
0t 0z _r dr (3.9a)

The relations for the equivalent spring-mass oscillator become

Maximum Lateral Force:

_(i + B )w 2 h _o

_ X _ W fFx aR 0@ rw

O-z o
r=R

sin _(r w, zw) d_ (3.12a)
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Maximum Moment:

M
Y

= Y

R 2

2
_(1 + B )co n H w _O

fr
W

O
z sinfl_ zw) d}w (rw' (3.13a)

Action Point:

Equivalent Spring Constant:

Z
- M

=z
R F

X

(3.15a)

k
k = -

cr

2
7_ (i+ B )w2Ii° r sinfl(I)n w (rw , Zw) d_]

_f a_• _-_ d_

Equilibrium
free surface

2

(3.16a)

Equivalent Mass:

- 2

pR 3

]
z sinfl(I, d_[w (rw' Zw)

J

ff a__nn dZ

Equilibrium
free surface

(3.17a)

3-10

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A 874831

A CLOSED FORM SOLUTION

Having posed the dimensionless linear problem for determining normal mode sloshing,

it is appropriate to discuss ways in which numerical, and therefore useful, results can

be obtained. The most desirable situation, of course, occurs when it is possible to

write down closed form solutions to a given problem. It is preferable that such

solutions be compact. Unfortunately, closed-form, compact solutions can be obtained

in only a very limited number of cases, such as: a} sloshing in flat bottomed channels

and b) in flat bottomed cylindrical tanks, both under conditions such that the equilibrium

contact angle is 90 degrees. In these cases the equilibrium shape of the liquid is that

of a rectangular solid and a right circular cylinder, respectively.

Lateral sloshing in a flat-bottomed, cylindrical tank can be described in a reasonably

compact way. The results for this special case are quite useful since they provide a

feel for the magnitudes involved in situations with more complex geometries where

numerical results can be obtained only with considerable difficulty. The problem

statement given by equations (3. la), (3.3a}, (3.8a}, and (3.9a} is much simplified.

Equations (3. la} and (3.3a) remain unchanged; however, Equations (3.8a) and (3.9a)

become

i 0 1 - Bh - (1 + B)w24 _ = 0 (3.19)r 6)r(rhr ) + -2 h0o
r

Oh a4_
0t - az (3.20)

Note here that all the coefficients in the free surface boundary condition are now

constants.

The normal mode frequencies can easily be found. The first step requires separation

of variables in Laplace's equation to obtain the general form
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= [ )] [ z) + C4sinh(XnZ)]c°sm0c°swt(I) C1Jm(knr ) + C 2 Ym(Xn r C 3 cosh(X n

Where J ( ) and Y ( ) are respectively Bessel functions of first and second kind
n n

of order m . It must be remembered that • is a function of time even if it does

not appear in Laplace's equation. Hence, the factor coswt in this relation. An

implied boundary condition for this problem is that the velocities of the sloshing liquid

and thence the velocity potential be regular (noninfinite) on the axis of the tank. This

requires that the coefficient to the Yn part of the solution be zero. Application of

this and the solid wall boundary condition, Equation (3.3a), results in the following

form for the velocity potential.

= CJl(kn r) cosh[kn(Z + _)]cos mO coswt (3.21)

where the _ 's are zeros of the equation
n

!

J1 ()_n) = 0 (3.22)

Next, this result can be substituted into a combination of equations (3.10) and (3.11)

to obtain normal mode oscillation frequencies.

2 Bkn + k3n
w = tanh k _ (3.23)

n I+B n

Note that there is a whole family of possible solutions. The fundamental, of

course, is the one of most practical importance.

Use of a velocity potential of the form of equation (3.21) in equations (3.12a) through

(3.17a) yields (for 1st mode)
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F
x

max

_hw(B + X2/ tanh kl _

k 1
(3.24)

M
Ymax

_h
w

2
k I

1 - cosh kl_

sinh kl t
(3.25)

cosh klt -
Z =

k lsinh klt
(3.26)

(1 + B ) tanh 2k12

k I =

kl(k21 1) (3.27)

tanh klt

1 = 2(2k1 k - I) (3.28)

It will be instructive to use these relations to determine the approximate behavior of

liquid propellants in a tank of typical size under different gravitational conditions.

Consider a 4 ft diameter tank filled to a depth greater than 4 ft. The expressions

for natural frequency, lateral force, moment, lateral force action point, spring

constant, and equivalent sloshing mass can be simplified. For first mode sloshing

X1 = 1.84. The expressions are shown in Table 3-I together with the numerical

values of the above parameters when the gravitational body force acting on the liquid

is zero, 10-6g o, and 1 go"

NUMERICAL SOLUTIONS

The normal mode problem for low Bond numbers has recently been solved by completely

numerical means for the hemispherically-bottomed, cylindrical tank geometry (3.1)
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From an applications viewpoint, the major results of this study were

Normal mode lateral sloshing frequencies. First mode sloshing frequency

as a function of liquid depth and axial Bond number (B = pgR2/G ) are

given in Figure 3-2. Higher eigenvalues are collected in Table 3-II.

Mechanical analog parameters to simplify the computation of the forced

response of the liquid to lateral perturbing accelerations (when the perturbing

acceleration frequency, if cyclic, differs from any of the natural frequencies

.including those listed in Table 3-II. The mechanical analog parameters are

presented in Figures 3-3 and 3-4.

Figure 3-5, giving the liquid volume-depth relationship in the tank bottom, is included

to aid the use of the information in Figures 3-2 through 3-5 and Table 3-II.

DISCUSSION OF NONLINEAR EFFECTS

It might be hoped that the solution of this type of problem could be extended to include

nonlinear effects. These occur because of the presence of the (V¢)2 terms in the

unsteady Bernoulli Equation, (3.6). But, unfortunately, this has not yet been done.

Two problems arise to make this a very difficult thing to do. First, because the free-

surface boundary condition is nonlinear, there is no assurance that the angular and time

dependence of the velocity potential can be separated as in the linear problem. Because

of this, it is not possible to identify coefficients to certain terms in the problem as

eigenvalues as in Equation (3.8a) where 2 is identified as the eigenvalue. Second,

in the linear problem, it is satisfactory to evaluate properties on the equilibrium

free-surface f because this is equivalent to evaluating them on the moving free

surface s (in Equation 3.6) to first order in h - all that is required by the linear

problem. This means that Laplace's equation need only be solved in a domain of

fixed shape. In the nonlinear problem, this simplification may not be possible.

There are two possibilities for obtaining solutions. The first involves treating the

problem in the form of a three-dimensional initial value problem. Techniques for
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carrying out this type of analysis in simpler problems will be briefly described in

Section 5 of this Handbook. The second possibility involves determining the nonlinear

effects by expanding the velocity potential in a perturbation series. This requires that

a small parameter exist. The (V_)2 term probably offers such a parameter when

nondimensionalized because adequate results for most purposes are obtained by

neglecting this term altogether. The net result of all this is that solution of the

nonlinear problem is extremely difficult. Challenge enought is offered by the simpler

and more useful problem of normal-mode, linear sloshing in practical container

geometries.

DAMPING UNDER LOW-G CONDITIONS

The damping of liquid sloshing motions in rocket tanks is an important subject because

witaout the effective dissipation of such motions sloshing can have an important influ-

ence on the structural design of propellant tanks and the operation of spacecraft

guidance and control systems. Because of its importance to rocketship design,

damping of liquid propellants has received considerable attention. Most of the

investigation of damping under high-g conditions has been collected by Silverman and

Abramson (3.2)

Most liquid propellants now in use have low viscosity. This results in very low natural

damping factors. This is illustrated by the relation reported in the above reference in

which the logarithmic decrement for clean cylindrical tanks, expressed in terms of

sloshing frequency, is reported to be

4

6 = 6.10 v].

It is seen that damping in small-scale models is much greater than in propellant tanks

of ordinary size, but that gravity level has a relatively small effect. Assuming this

can be extrapolated to very low g levels, reducing the gravity level to 10 -6 go ' for

example, increases the log decrement by only a factor of about 30. But, since

the log decrement for clean tanks under normal conditions is only 0.004 or less
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(for a 4-ft diameter tank, say), it will still be quite small, especially considering the

very low natural sloshing frequencies. In short, damping must rely on internal

devices such as baffles just as under high g conditions.

Analysis can be applied to most baffle systems to determine their effectiveness. The

method first used by Miles (3.3) is an especially useful way of determining damping

of baffles under reduced g conditions because of the difficulty of measuring damping

in carefully scaled experiments. This method involves estimating the drag force on

the baffle by computing the liquid velocity in the tank at the baffle location as if the

baffle weren't there, using this to compute the drag force on the baffle using available

drag coefficient information for the baffle shape, and then estimating the average rate

of energy decay caused by the baffle. The latter is simply the product of the drag

force and the liquid velocity. These quantities can all be computed on an elemental

basis at one position of the baffle and then integrated over the baffle to obtain the

total average rate of energy dissipation.

Consider, as an illustrative example, the ring baffle shown in Figure 3-6. The liquid

velocity in a clean tank of identical geometry can be obtained by differentiating the

velocity potential

r Xl (Th- J1(tl )coshW

kl J1 (kl) sinh --R---

+z)
cos cot cos 0

The liquid vertical velocity at the wall at depth d is

11
w sinh_-(_ - d)

W ----w = cos wtcos 0
k/

sinh --
R
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This may be used over the entire baffle width if the width is not a large fraction of

the radius. The drag force over an elemental angle of the baffle is

_2-2 (_- - d) 2CDPWR w sinh 2
dF = R cos 0cos 2wt-d0

2gc sinh 2
R

The rate of energy dissipation at this element is

dt

CDPWR_w3 _3

element 2g c

sinh3-_ ('_" - d)
__cos wt cos 3 0 dO

The average rate of energy dissipation over the entire baffle is determined by inte-

gration with respect to time over one cycle and with respect to 0 over the interval

(0, 2_).

d-E 7rpWRCD

dt gc

3

sinh _ (_- - _) 3
¢0h

w X1 3_
sinh _,

This is easily related to the damping ratio 7 by

m

dE
dt

5' =
2wE

The average energy of the sloshing wave is obtained by averaging the kinetic energy

per unit volume over the entire volume, but is equivalently and more easily obtained

for this case from the surface integral
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2_

2_/_

_- j° d_- 2ge-_ f_ _

o Entire

bounding
surface

For the geometry in Figure 3-6

E
p_2_2 7rR 3 k 2 - 11

k 1
4gc 3 tanh _-

x 1 _-

A combination of these yields

k I _ k 1
3 k 13_w sinh3-R- ( _- - d) tanh_- _-

k =
2 CD

2\°_/ R2(kl - 1)

The point of all this is that the computed damping ratio Y is a function of tank size and

geometry, and the maximum height of the wall wave, and the baffle drag coefficient.

Potential flow velocities may now be used to determine the drzg coefficient.

Keulegan and Carpenter (3.8) have indicated that, in an important range, the drag co-

efficient for ring baffles is given by

C D = 15

where w m is the maximum velocity at the baffle location, W the baffle width, and

T the period of the sloshing wave. Now, w is directly related to the sloshing fre-
m

quency and T inversely related; thus P is is independent of the natural frequency.

Even outside the range of 0 _< P = w T/W __ 20 indicated above, the drag co-
rn

efficient is still a function only of P and independent of frequency. Since, for the
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fiat interface geometry of Figure 3.6, the drag coefficient and thence the damping

ratio are independent of Bond number.

The net result of this discussion is that baffle dampling coefficients are not dependent

on the gravity level. Similar arguments apply to different types of baffles constructed

from screens or perforated plates. Thus, the large quantity of information developed

about the damping ratio of different types of baffles (such as is collected in NASA SP

106 (3.2) can be used more or less as is. The logarithmic decrement is related to

the damping ratio in the conventional way:

5 = 27r_

and 5 is related to the slosh wave decay by

w

5 = In n

where the numerator is the maximum height of the nth oscillation and denominator that

of the n + 1 st oscillation.

The central point of this illustration is that the damping afforded by a given baffle can

be computed for situations for which experiments cannot now be carried out. It is im-

portant to have some tool to use in a situation even if the ideal tool is not immediately

available.

An experimental study (3.5) of the effect of liquid free-surface curvature attending low-g

conditions has indicated that the natural frequency can actually be increased by ring baf-

fles. This occurs as the baffle apparently deflects the flow of liquid up the wall toward

the tank centerline causing distortion of the interface on the upward swing of the wave.

This effect is similar to that caused by dynamic contact angle variation (often called
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"hysteresis") which has been shown to result in an increase of the low-g natural fre-

quency (3.6). The effect of baffle location on natural frequency is shown in Figure 3-7

where the ratio of the natural frequency with the baffle to that without is plotted as a

function of baffle depth.
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Figure 3-7 The Effect of Ring Baffle Location on Zero-g Sloshing Frequency
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Table 3-II

LATERAL SLOSHING EIGENVALUES FOR CYLINDRICAL TANK WITH

HEMISPHERICAL BOTTOM (e = 5 Degrees)

Bond No.

10

2O

5O

.... --1

Dept_ mgenvalues _: = _lc2[(l+_)_/Oro3 ]

ho= ho/ro
k-l 2 -3 4

3 2.81 34.6 137 353 723
2 2.80 34.6 137 353 723
i 2.69 3L.0 136 353 723
1/2 2,11 31.5 131 349 721
1/4 1.33 24.8 113 31_ 675
1/10___0.596 .... 12.___63.6 .... 197 .... 465

3 2.38 26.2 95.8 239 480

2 2.38 26.2 95.8 239 480

I 2.25 25.8 95.7 239 480

1/2 1.65 23.6 92.0 235 477

1/4______0.981 16.7 74.1 203 432

1/10 0.403------12.5------73.0 239 578

3 2.21 22.4 78.3 191 380

2 2.20 22.4 78.3 191 380

I 2.07 22.1 78.3 191 381

1/2 1.49 20.2 75.6 188 378

1/4 0.717 11.8 .... 54.2 154 338

I/I0 0.397 12.7 74.2 240 not produced

3 2.00 17.0 55.4 131

1 1.85 16.8 55.3 131

1/2 1.17 14.1 50.8 124
1/4 0.61_-'--_9.93------45.7 129

1/10 0.408 11.8 67.3 214

255
255
245
279

502

3 1.90 13.3 40.4 92.1 176

2 1.90 13.3 40.4 92.2 177

I ____1.7213.240.3 92.1______177

1/2 1.02 10.4 35.1 83.5 164

1/4 0.604 8.74 38.3 104.1 219

1/10 0.434 10.6 58.2 180.5 417

3 1.85 i0.2 28.6 62.5

I ____ 1.6_ i0.I 28.5 62.3
1/2 -- 0.9_-- ----8.11 25.5 -- -- --58.9 -- ----
1/4 o. 629 7.62 30.8 80. I

1/lO 0.475 9.34 48.1 144

3 1.84 7.54 18.2 36.7
2 1.83 7.55 18.3 36.8
1 _____1.58 _____7.48 18.2_____36.6_____
1/2 0.939 6.40 17.5 37.3
1/4 o.7ol 6.41 22.1 52.7
1/10 0.549 7.77 35.7 101

117
i17

114

165

325

65.2

65.5
_65. i

68.7
103
218
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Section 4

LIQUID PROPELLANT LOCATION AND STABILITY

INTRODUCTION

The location of liquids in rocket propellant tanks under low gravitational conditions

has, as with the shape of the liquid surface under low-g condition, been the subject of

much investigation over the last few years. It is desirable to know where liquid pro-

pellants are under reduced gravitational conditions, and how best to get them where

they need to be at specified times. In fact, this information is more important than

that of the shape of liquid masses under reduced g conditions discussed in Section 2.

Discussion of this topic has been delayed to this section because the ideas involved

draw naturally on the materials presented in Section 2 and 3.

One periodically encounters liquid handling systems which are dominated by surface

tension effects. A liquid-filled thermometer (e.g., mercury-in-glass) is a good ex-

ample. The liquid located in the capillary always remains adjacent to the bulb end

regardless of the attitude of the thermometer. This suggests that surface tension

forces are somehow causing the liquid to remain in the bulb end of the thermometer

even though gravitational body forces may act to displace the liquid to the other end.

A corollary to this is that, under low g conditions, when surface tension forces domin-

ate liquid behavior, liquid propellants in rocket tanks may be similarly affected, and

that the liquids may be stabilized by surface tension away from more desirable loca-

tions. The purpose of this section is to indicate why this can happen and to show how

the effect can be calculated.

Consider the classic example used to illustrate stable equilibrium shown in Figure 4-1.

The ball is acted upon by a downward gravitational force. The ball located at point A

is in a position where its gravitational potential energy is at least minimum locally.
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Displacement of the ball from point A at the bottom of the valley will result, in the

absence of mechanical dissipation, in cyclic motion of the ball about point A. Reloca-

tion of the ball to point B located at a ridge results in the ball being in a position of

maximum gravitational potential energy. Displacement of the ball in one direction or

the other from point B does not result in oscillation about this point, but rather results

in the ball rolling away from point 3.

Before considering the stability of liquid propellants under low gravitational conditions,

it is useful to examine the stability of another mechanical system whose stability is de-

pendent upon the value of the gravitational acceleration relative to other parameters.

Consider the mechanical system shown in Figure 4-2. A mass, W, is located between

the vertical walls of the system by two horizontal springs and by a weightless rigid

vertical link pinned at both ends. The differential equation describing small motions

of the mass W about its equilibrium position x = 0 is easily derived with the aid of

Newton's second law: the unbalanced force acting on the mass is equal to the mass

times its acceleration.

W _ = _kx + W___g_x (4.1)
gc _ gc

This can be arranged as follows:

2
+ p x = 0 (4.2)

Where

2 kgc g (4.3)
P - W

It can be stipulated that the solution to this differential equation describes cyclic motion
2 2

about the equilibrium position x = 0 as long as p is greater than zero. But p is

dependent upon the value of the mechanical gravitational acceleration relative to other
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parameters of the system. The important lesson here is that the system is stable if

it is able to oscillate. If the system is unstable it cannot oscillate; a small displace-

ment will grow in time. When the vibration frequency is exactly zero, the system is

neutrally stable, neither stable nor unstable. This condition, of course, separates

stable conditions from unstable conditions.

The example of a mechanical system with gravity-dependent stability has little to do

with the stability of liquids in rocket propellant tanks except to illustrate a principle.

A more cogent example is available in the behavior of a small amount of liquid trapped

in a small diameter tube. Consider the liquid shown in the small tubes in Figure 4-3.

Liquid is shown in a stable condition on the left and unstable on the right. The equili-

brium location of the liquid in the tube on the left is determined by the small pressure

difference which exists between the gas pressure above and below the slug of liquid.

However, the lower free surface is stabilized by the surface tension property of the

liquid. This can be illustrated by performing a simple experiment. If the diameter of

the tube is increased, a diameter will be reached beyond which surface tension is no

longer capable of stablizing the liquid surface, and the liquid and gas will begin to

exchange positions with the liquid running down the walls and the gas rising in the

center, as shown on the right. All other things being equal, the size of the tube has

determined the stability of the system. The conditions of this experiment can be modi-

fied slightly by installing the small cylinder in a centrifuge with a small quantity of

liquid located in the same manner as before. As the speed of the centrifuge is in-

creased, an acceleration will be reached beyond which the liquid is destabilized as on

the right in Figure 4-3. In this experiment, the effective level of gravitational accel-

eration has determined the stability of the system. It can be concluded then, that for

a given liquid, increasing size and/or g-level eventually results in destabilizing the

liquid surface.
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THE STABILITY OF THE LIQUID GAS INTERFACE

The stability of the free surface in liquid propellant tanks against adverse accelera-

tions can be determined in two ways. The small vibration method just illustrated pro-

vides perhaps the easiest way to an understanding of the limit of stability. Here the

small amplitude lateral sloshing frequency of the surface is determined. Those condi-

tions resulting in a zero sloshing frequency determine the limit of stability.

A more fundamental approach, however, is based upon the fact that, from a mathema-

tical viewpoint, the stability of a conservative mechanical system is assured if, and

only if, the total potential energy of the system is minimized. This is consistent with

the second law of thermodynamics which requires that a stable system isolated from

its surroundings must have maximum entropy.

The question of stability, however, cannot be attacked until the shape of the meniscus

has been determined. The shape of the liquid whose stability limit is to be determined

can be found according to Section 2. Consider the liquid in the cylindrical container of

rotation shown in Figure 3-1. We will now use the small vibration analysis developed

in Section 3 to determine the stability of the liquid to an adverse acceleration - one

such that the body forces acting on the liquid are directed from more dense liquid

toward a less dense material (say, a gas). An adverse acceleration would be opposite

to the convention adopted in Figure 3-1 and would tend to make the liquid run out of the

container in an upward direction. The stability of the liquid can be determined by

solving for the sloshing frequency in the problem posed by Equations (3. la), (3.3a)_ (3.8a)

and (3.9a), setting this equal to zero, thus determining the Bond number which makes

the system neutrally stable.

This process is best illustrated by examining the closed-form solution of the special

case examined in Section 3. The Bond number for neutral stability is best obtained by

solving for the frequency of vibration in Equation (3-23) and equating this to zero.

4-4

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A8 74831

¢0
n

Bk + k 3

= 0 = n ntank k
I+B n _4.4)

The critical Bond number is

o
B = - k _

cr n

The lowest value of this is the one of importance, and this is

B = - 3.39
cr

Note that the depth of the liquid in the tank does not affect the stability of the free

surface.

There is another useful viewpoint for this problem which results in an easier way of

performing stability calculations. This can be observed by re-examination of Equa-

tion (3.19), the free surface boundary condition for the simple sloshing problem just

used in the preceding illustration. If it is assumed beforehand that the frequency is

zero, (3.19) becomes

1 8 1
r ar (rhr) + --_ h00 - Bh = 0 (4.5)

r

This is a linear partial differential equation with the boundary condition drawn from

the contact angle condition for the sloshing problem

_,la_g_,[ = 0 (4.6)
r=l

The fact that this equation is linear enables reduction of the solutionof Equation (4.5)

to the solution of two ordinary differential equations by the familiar process of separa-

tion of variables.
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Setting

h(r, e) = _(r)_(e) (4.7)

(4.6) can be reduced to

-_ + 11 =r
r

0 (4.8a)

2
T +_ T = 0 (4.8b)rr

Where (4.8a) is subject to boundary conditions

_?(0) = _?r(1) = 0 (4.9)

Equation (4.8a) is Bessel's differential equation. The boundary conditions (4.9) can

be met only if 2 > 0 and B < 0. With this, the problem is reduced to solution of

(4.8a) subject to (4.9). Now -B is an eigenvalue of this problem. Solutions must be

found for (4.8a, 4.9), and these occur only for certain values of -B.

The solutions are of the form

_? : J (_/-Br) (4.10)

where J( ) is the Bessel function of first kind of order p. Eigenvalues for this

occur (for p = 1) only when -B = -3.39, -28.5, -72.8, .... ; and only the smallest

of these occurring for _ = 1 is important (this number being the smallest nontrivial

eigenvalue for _ -> 0).
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The process just outlined gives us another and easier way of determining the critical

Bond number for meniscuses of more complicated shape. The basic idea is to simul-

taneously solve the nonlinear differential equation for the free surface shape (2.4)

rf
1 8 r

r 8r_1 + f2r

Bf - frr (0) = 0 (4.11)

subject to

f(O) = fr(1)-cot(O+ _p) = 0 (4.11a)

and the linear free surface boundary condition for the sloshing problem (3.8a) with the

frequency set equal to zero.

1 8 rhr 1 h00
+ Bh = 0 (4.12)

r 0r 1__r23 r2_ + f2r

subject to

h (0) = h (1) = 0 (4.12a)
r

Equation (4.12) is linear, although with nonconstant coefficients, and the technique of

separation of variables is still applicable. Equation (4.11) and the first boundary con-

dition on (4.12) (i. e., h (0) = 0) limit the use of these equations to cylinders or cones

which do not contain bodies of revolution along the axis as in annular tanks. The

equations and/or boundary conditions can easily be modified to allow extension to other

cases. The first of the boundary conditions (4.12a) may be modified to account for

constant contact angle condition at a circular cylindrical or conical inner body, i.e.,
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h r (r i ) = 0 (4.12b)

Both boundary conditions on (4.12) become more complex where meridians of the

inner and outer surfaces are curved.

AVAILABLE SOLUTIONS

By this time the results of stability calculations for many geometries are available in

the literature. Reynolds, et al. (4.1) have presented the most extensive exposition of

this subject. Selected results from this work and others available at this time are

summarized as follows:

Circular Cylinders. The solution to Equations (4.ii) and (4.12) for this case was first

computed by Seebold (4°2) The stabilitylimit for this simple geometry is presented

as a function of contact angle in Figure 4-4. Note that the closed form solution pre-

sented as an illustrationis included in this case.

Annular Cylinders. The problem for the cavity formed by concentric circular cylin-

ders is the same as that just above except that the boundary conditions for (4.11) and

(4.12) are replaced by

-fr (ri) = fr (1) = cotO (4.11b)

h r (r i) = h r (1) = 0 (4.12b)

Results of computations by Seebold, et al. (4.3) are given in Figure 4-5.

Rotating Circular Cylinders. The stability of liquid in solid body rotation with angu-

lar velocity w with a cylindrical container about its own axis has been computed by

Seebold (4'4) and is given in Figure 4-6. The differential equation for the free surface
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shape (4.12) is modified by the addition of a singleterm resulting in

rf
1 d r

r dr _/1 + f2
r

Bf - f (0) + _22 r 2 = 0
rr

where _22 = pR 3 w2/2(r. In this case, the boundary conditions (4. lla) and the sta-

bility equation (4.12) and its boundary conditions (4.12a) remain unchanged.

Cones. The solution to (4.11) and (4.12) for this case is presented in Figure 4-7. The

solution here depends only upon the edge angle and the radius of the contact circle

measured from the axis of the capillary shape. These results can be used for bubbles

or drops where the edge angle defined in the figure is normally negative.

Annular Cones. The results of partial computation of the limit of stability in a conical

cavity with a circular cylindrical center body coaxial with the cone is given in Figure

4-8. The volume of liquid stabilized is plotted against the Bond number based upon the

radius of the central cylinder with total cone angle as a parameter for a contact angle

of 5 degrees.

Spherical Cavities (IncludingAnnular Spherical Cavities): Spherical cavities without

center bodies have a zero limit of stability. That is, the slightestadverse accelera-

tion will displace the liquidto another location in the tank. When center bodies are

present, however, liquidcan be stabilizedagainst an adverse acceleration. Results

of partial calculations(4"5) are presented in Figure 4-9. These calculations are also

limited to a 2-1/2-degree contact angle and to cylindricalbodies concentric with a

diameter of the sphere. The criticalBond number based upon tank radius is plotted

against the tank fillfraction with the ratio of cylindricalstandpipe radius to tank

radius as a parameter.
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General Contains of Revolution (Without Center Bodies}. Reynolds (4" 1) has developed

a general criterion for the limit of stability of liquids in surfaces of revolution. The

reader is referred to the Reference 4.1 for details. (This material is also presented

in NASA SP-106 (4" 6). )
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Section 5

LIQUID REORIENTATION AND ULLAGE ENTRAINMENT

INTRODUC T ION

The operation of a sophisticated space vehicle system may require maneuvers which

will place liquid propellants at the wrong ends of their respective tanks. Subsequent

operation of the propulsion system requires that the liquids be oriented at the drain end.

It is important, therefore, to know how the liquid propellants behave during liquid-

settling maneuvers so that these will have a minimum effect on the efficiency of the

spacecraft. This section of the Handbook will describe the basis for a theoretical treat-

ment of the problem, outline methods for implementing the theoretical treatment, and

indicate the results of analysis as well as experiments which have been carried out.

A brief description of a settling maneuver and the resultant liquid behavior will establish

a basis for the discussion to follow. Consider the rocket propellant tank shown in

Figure 5-1a. The tank has been in free fall for a period of time with the propellant

collected in the end opposite the drain. Further, the interface has the spherical cap-

shape characteristic of free-fall conditions. At a given time, an axial force is applied

to the tank as shown in Figure 5-lb. When the liquid-tank system is viewed from a

coordinate system fixed with respect to the tank, it appears as if the liquid is acted

upon by a body force directed oppositely to the applied force. In response to this body

force, the liquid begins to run down the tank wall forming a wall sheet surrounding a

central bubble which rises toward the upper end of the tank (Figure 5-1c). As the wall

sheet enters the tank bottom and impinges upon itself it may, depending upon preceding

conditions, produce a central jet of liquid which can rise to the liquid still remaining

in the upper end of the tank (Figure 5-1d). Formation of such a jet is usually a very

dissipative process and the jet soon dissapears into the pool of liquid being collected in

the tank bottom. The wall sheet, as it joins the collecting pool, carries ullage gas
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with it which is mixed in the form of small bubbles with the collected liquid (Figure 5-1d).

These eventually rise to the surface of the collecting pool as long as the settling accel-

eration is maintained. Meanwhile, the central bubble approaches the tank top, and as

it does so, it can ordinarily be expected to slow down.

Different behavior from that just described can be expected depending upon the departure

of operation conditions from the preceding conditions:

• Should the tank be acted upon by a force opposite to the settling force prior to

the settling process, the interface will be flattened. Application of the settling

thrust may, depending on the settling acceleration level, result in the formation

of a central drop in addition to the wall sheet flow. Such drops have been

observed to eventually wash off on to one side of the tank, but most propellant

tanks are short enough that this does not occur before the wall sheet and the

central drop impact the tank bottom.

• Significant transverse liquid motion prior to the settling maneuver will cause

the liquid to slide predominately down one side of the tank.

• Very low settling accelerations do not result in the entrainment of ullage gas

in the collecting liquid pool.

• Baffles have a very marked influence on the flow patterns in the tank. The

nature and extent of the effect depends on the detail baffle design.

This description points out a number of details about settling liquid motions which re-

quire quantitative discussion. First, the position histories of the reorienting wall sheet

and the central bubble and the average thickness of the wall sheet are desired. The

position history of the wall sheet is needed to determine the minimum time for a settling

maneuver using secondary propulsion. The position history of the central bubble deter-

mines when equipment such as venting devices will be free of liquid. Second, the height,

volume, and life of the rebound jet affect vehicle dynamics. Third, the quantity and

size of ullage gas bubbles entrained in the collected liquid influence the time required

to settle them out, thereby affecting total impulse propellant requirement for the

settling maneuver.
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MATHEMATICAL PROBLEM FORMULATION FOR AXISYMMETRIC REORIENTATION

The first of the basic phenomena associated with liquid reorientation to be examined is

the initial formation of the wall sheet and the central bubble. The mathematical problem

describing the initial stages of the axisymmetric reorientation of a liquid from one end

its tank toward the other can be easily formulated. Consider the liquid in the tank

pictured in Figure 5-2. Based upon the assumptions that the liquid is inviscid and in-

compressible and that its motion is irrotational, the motion of the liquid can be deter-

mined from the solution of the boundary/initial value problem derived as follows. The

governing equation is Laplace's equation, the equation of continuity. In terms of the

velocity potential, this may be written in polar cylindrical coordinates

(Prr +-1 + (Pzz = 0 in D (5.1)
r

where the velocity potential is defined by the following equations for the radial and

axial velocity components.

_. = q_ , w = gp_. (5.2)

The solution to Laplace's equation must satisfy a zero normal flow condition at solid

wails.

- 0 on w (5.3)aft -

The solution is further constrained by a boundary condition drawn from the nonsteady

Bernoulli equation applied to the free surface together with a kinematic condition

identical to the one developed in the preceding section on lateral sloshing. The general

nonsteady Bernoulli equation is

p+ 1 )2 - 0_T- -
P _(V(p + c_(t)g z + _ = F(t)at
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The pressure difference across the interface caused by curvature of the free-surface

is

I i rf_ i o f0 }
- = _ 2 1 2 + ----2 O0_ {2 1-2r

pg p a _ O_ i_oi+ + i+ +r --2 f0 r _ f0
r r

= 2crH

Substitution of this into the preceding equation and evaluation at f = 0 when the

velocity potential is zero yields

E

F = pg 2_ H ° + go_ _
o p p o

Here, subscript zero refers to the initial condition at t = 0. The free surface bound-

ary condition then becomes

2a H

P
1 )2 _ - F(t)2 (_7(p - c_ (t)gcf - 3t- - (5.4)

The right hand side of this equation is an arbitrary function of time. The kinematic

condition is, using the nomenclature defined by Figure 5-2,

Ot OE OP or
(5.5)

The time dependent solution to this problem is determined from the application of

initial conditions regarding the location and velocity of the free surface.

f(F , 0) = fo(F) on f (5.6)
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01: 01 0on Uo(r) a r fo (r)' Wo(r) = fo (r) =

The first of these boundary conditions gives the location of the interface at t = 0 ; the

second indicates that the liquid is initially at rest.

Numerical treatment of the problem just posed is made most convenient by nondimension-

alization of the equations. The coordinated in equations (5-1 through 5-7) are normalized

by dividing distances by a convenient length, say the radius of the tank R shown in
o

Figure 5-2. Normalization is completed by dividing the velocity potential and time by

] 1/2R 3 g_ (1 + fl} and
R ]1/2

respectively where fl = (_/Pgoz R2 ' the reciprocal of the Bond number based on the

maximum acceleration. The distance R and acceleration ga can be any value but

are conveniently taken as the tank radius and the maximum value of the axial accelera-

tion such that r and a range from zero to unity.

Laplace_ equation (5.1) and the boundary conditions at solid walls (5.3) remain unchanged

by this normalization as do the kinematic condition and the initial conditions.

The complete problem statement in dimensionless form is as follows.

(I'rr + r14'r + _zz = 0 in D (5.1a)

ao
O-T = 0 on w (5.3a)

2fill+ 1 )2
-

_____ f 04)
1 + fl at - 0 (5.4a)
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,#

Of = ,I, - f 4, (5.5a)
0t z r r

f(r) = fo(r) on f (5.6a)

Uo(r ) = Wo(r ) = 0 on f (5.7a)

The mathematical problem just posed appears straightforward. One might imagine that

the solution to Laplace's equation could be found which satisfied almost any boundary

conditions. Such is not the case, unfortunately; the problem set up in the preceding

paragraphs offers considerable numerical difficulties. The most straightforward way

of attempting a solution is to expand the velocity potential in a series of spatial functions

each term multiplied by a time dependint coefficient. The spatial functions are chosen

so as to satisfy Laplace's equation in the interior of the liquid. The series is then

substituted into the boundary conditions and the resultant expressions evaluated at

enough points on the boundary of the domain occupied by the liquid to enable evaluation

of the coefficients to the series at any given point in time. Next, the series is used to

determine the velocity of particles in the free surface at the given point in time. These

are used to predict the location of the free-surface of the liquid at the next time step.

Sophisticated computing schemes may involve the repetition of enough of these steps

to enable the correction (in the numerical sense) of truncation errors introduced by the

preceding (or predictor) portion of the calculation.

In the recent past, a number of attempts (5.1, 5.2) have been made to compute reorienta-

tion motions in the manner just outlined. The process used in one of these is repeated

in enough detail to illustrate the procedure.

The method used to approximate the solution of the foregoing problem is as follows.

In brief, the velocity potential is represented in the form of a series

4, (r, z, t) = _ Cn(t) qr (r, z)
n

(5.8)
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where the functions _I,r(r , z) satisfy Laplace's Equation (5.1) (and possibly some of

the boundary conditions included in 5.3). The time dependent coefficients C (t) are
n

determined numerically by an orthonormalizing computation in order to satisfy those

boundary conditions which are not naturally satisfied by _I,r(r , z).

For the flat-bottomed cylindrical container shown in Figure 5-3, the velocity potential

satisfying Equations (5.1) and (5.3) has the representation, determined by separation

of variables,

_. cosh (Xn z)(r, z, t) = Cn(t ) Jo(Xn r) cosh (k n H) (5.9)
n

where J' (kn) = 0 determines the numbers X n = 1 2, The time variationO n' ' "'''

of the velocity potential _ (r, z, t) [i. e., of the coefficients Cn(t)] is determined by

requiring that the representation (5.9) satisfy the boundary condition (5.4a); i. e., that

dC n (t) F n(r, t) : 4)(r, t)

n, m

(5.10)

where

rf
%(r, t) : f_ + --_ 1 d r 1 22 [Vcp (r, f, t)] (5.11)

1 + fl 1+ fl r dr _+ f2
r

and where

cosh[X n f(r, t)]

F n(r, t) = Jo (knr) cosh (Xnil) (5.12)
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This can be satisfied approximately by determining the coefficients C n (t) numerically

by some orthonormalizing computation [cf.Davis and Rabinowitz (5"3) , for a general

description of orthonormalizing methods]. The method developed to determine the

, is outlined below. Basically, itamountsfirst few coefficients C n(t) , n = 1,... N O

to following the motion of the free surface on the 0 = 0, _ plane. The derivatives

dCn(t)/dt may be determined from Bernoulli's equation i.e. , from

N

o dC

-_ (t)Fn (r, t)

n=l

= 3) (r, t) (5.13)

by the orthonormalization technique used by Moore and Perko (5.1). The functions

(r, t) and F n (r, t) are defined in (5.4a) and (5.10) respectively. The predicted

surface shape at t + At follows from the kinematic equation (5.5a) as

f(r, t + At) = f(r, t) + ft(r' t) At

= f (r, t) + [(Pz - fr q_r ] (r, t) At (5.14)

Having computed the predicted coefficients and surface shape, one then proceeds to the

correction step of the modified Euler method to move ahead one increment of time.

, and the motion of the freeThe time dependent coefficients Cn(t ) n = 1,... , N O

surface f(r, t) are determined in this way. The computation scheme is outlined in

Figure 5-4.

OBSERVATIONS BASED ON AVAILABLE ANALYSIS AND EXPERIMENTS

Results of the calculations carried out by the computation scheme just described which

are most important to the description of the reorientation of liquids in rocket propellant
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tanks are summarized as follows together with the results of other analysis and experi-

ments:

• The liquid wall sheet formed as the liquid begins to run down the tank wall

from its initially hemispherical shape accelerates with the body force acting

on the liquid. Small scale experiments performed in drop tower experiments

have indicated that the wall sheet accelerates at about 0.70 to 0.87 times the

rate of a freely failing body. The discrepancy between experiments and the

results of this type of theoretical treatment may possibly be laid to the fact

that the analysis neglects the viscous property of the liquid. This seems proper

in the interior of the liquid because the analysis of other aspects of the re-

orientation phenomenon agree to a much better degree with experiments. The

difficulty apparently lies in neglecting the boundary layer formed adjacent to

the tank wall. Larger scale experiments designed to explore other aspects of

reorientation liquid behavior indicate that the viscous boundary layer has a

much smaller effect on the acceleration of the leading edge of the reorienting

wall sheet. The small scale of drop tower experiments and the relatively

larger scale experiments required for other purposes (such as exploring liquid

rebound) leave a gap which cannot easily be filled with available experimental

facilities. Consequently, there is now no experimental evidence one way or

the other indicating that the slowness of wall wave leading edges in small drop

tower experiments is due solely to the necessary small scale of drop test

models.

• The thickness of the wall sheet formed in the initial stages of reorientation is

strongly influenced by the shape of the liquid prior to the application of the

settling acceleration. When the motion starts from a spherical cap interface

the wall sheet thickness 5 is given by

5 = 0. 165 R_

where R is the radius of the tank and x is the axial distance from the vertex

of the rising bubble.
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This expression was derived by Taylor (5" 4) in the steady state analysis of

the rise of large bubbles in cylinders.

The central bubble which forms upon the application of settling acceleration to

a liquid with an initially spherical cap interface shape finally attains the rise

velocity developed by Taylor* and even earlier by Dimitrescu (5' 5)

v b = 0.46_

The time required to achieve this velocity is approximately given by

t = _ for B R > 10

A precise value for this length of time is not available from the analysis

because the results reported here were obtained by extrapolating the calculation

from the computation scheme past the point in time when they became unstable.

Results of the extrapolation do, however, agree quite well with experimental

observations.

As the reorientation proceeds, the initial wall sheet enters the bottom of the tank,

assuming, for the moment, that there are no obstructions in the tank such as baffles.

The bottoms on most liquid propellant tanks are segments of spheroids. This geometry

effectively reduces the flow area for the wall sheet, and, because of this, the wall

sheet grows thicker. Upon reaching the center of the tank bottom, the liquid impacts

upon itself resulting in a rather violent splash or geyser (often called rebound). As

the flow proceeds, the tank bottom begins to fill and the wall sheet flows then into a

growing pool of liquid. Ullage gas is entrained by the wall sheet as it flows into the

collecting pool. The numerical characteristics of the phenomona just outlined are

described below to the extent that experimental evidence allows.

*Op. eit.
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Reorientation such that the Weber number

2
R V R

W = _ <2

results in essentially no geyser (5" 6) The velocity V R may be estimated for

this purpose from V R _ _ where h is the distance travelled by the wall

wave leading edge until the initial impact. The geyser resulting from reorienta-

tion Bond numbers of the order of 3000 have been examined experimentally under

standard gravitational conditions. It is observed that the geyser initially re-

bounds a significant percentage of the tank length and may approach the location

of the liquid in the tank prior to the application of the settling acceleration. The

diameter of the geyser during this initial portion of its life averages 0.3 to 0.4

the radius of the tank. The growth and decay of the geyser is shown in Figure

5-5. It may be concluded that during the growth of the geyser the liquid is

exerting a greater force on the bottom of the tank than is exerted after the

geyser has subsided.

Ring baffles and internal tank stiffeners,commonly employed in propellant tanks,

can have a marked influence on the character of the reorientation flow. Baffles

severely complicate the reorientation flow pattern and can result in a flow which

is initiallypulsating. The processes involved in such a pulsating flow are as

follows:

At all but perhaps very low reorientation Bond numbers and high filllevels,

the wall sheet thickness is of the order of the width of these baffles and

structural numbers. The wall flow encountering one of these previously

unsubmerged obstacles is deflected radically inward toward the tank center

(see Figure 5-6a), causing a thickening of the sheet and eventual impinge-

ment upon itself at the tank center. The angle of deflection is determined

by the ratio of the wall sheet thickness to the baffle width. Impingement of

the deflected flow at the tank centerline partitions the ullage volume and
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temporarily prevents further reorientation of the gas "below" the sheet of

propellant spanning the tank. Two propellant streams issue from the impinge-

ment area in opposite directions along the tank axis, one continuing into the

tank drain and the other returning toward the tank top in a recirculation pattern

(Figure 5-6). Because the liquid spans the tank cross section at the baffle, the

reorientation flow is temporarily interrupted. At some point the liquid flow

passing the baffle is stopped (Figure 5-6c) and the interface spanning the baffle

fails again (if the Bond number is still large enough) allowing further interchange

of liquid and the gas in Volume 2 (Figure 5-6c). It should be noted that the

stability limit for this second interface condition at the baffle can be higher by

nearly an order of magnitude than that for the "clean" cylindrical tank geometry

with small contact angle.

The collection of liquid in a pool at the tank bottom is accompanied by the entrainment

of a certain amount of ullage gas in the liquid. The wall sheet carries the gas into

the liquid where it forms into a large number of small bubbles.

Experiments(5.5) performed with water as the test fluid indicate that there is a Weber

number minimum entrainment condition given by

W
e.

1

= 0.50 Re 2/3

with We. = uiQ' p_/cr and Re = Q'/v
1

where u i , Q', p_, _, and v are respectively the minimum entrainment wall sheet

velocity, liquid wall sheet flow rate, liquid density, surface tension and kinematic

viscosity. Conditions resulting in the Weber number less than the critical quantity

given here apparently do not produce ullage entrainment.

These same experiments indicate that the volumetric rate of ullage gas entrainment

P' is given by
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P' = 0.0009 F
r

with F r = (u_ - u i)2/2g t_ where u_,

acceleration and wall sheet thickness.

g, and t_ are the liquid velocity, local

Further, the minimum and maximum bubble diameter may be prediced by:

Minimum diameter:

Maximum diameter:

2Dma x u i P_

= 15.9 _-/

In these relations p' is the density of the gas being entrained. All of the

foregoing relations for gas entrainment are considered valid when the gravity

level does not vary too much from 1 go' say 0.1 go -<g -<10 go' and

where the F roude number based on liquidwall sheet velocity is limited to a
2

few hundred, i.e. Fr = u_/2gt_ <200- 300.

5-13

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A_7_tS24

)

REFERENCES

5.1 Perko, L. M., and Moore, R.E. : "Inviscid Fluid Flow in an Accelerating

Cylindrical Container, " J. Fluid Mech., Vol. 22, June i965, pp. 305-20

5.2 Coneus. P., Crane, G. E., and Perko, L. M. : "Inviscid Fluid Flow in an

Accelerating Axisymmetrie Container, " Conference on Fluid Mechanics and

tleat Transfer Under Low Gravity, sponsored by AFOSR and LMSC and held at

Loeld_eed Missiles & Space Company, Palo Alto, Calif., 24-25 June 1965

5.3 Davis, P. J., and Rabinowitz, P. : "Advances in Orthonormalizing Computation,

Advances in Computers, Vol. 2, Academic Press, New York, 1961

5,4 Davies, E. M., and Taylor, G.I. : "The Mechanics of Large Bubbles Rising

Through Liquids and Through Liquids in Tubes, " Proc. Royal Society, Vol. 200,

Series A, pp. 375 ff.

5.5 l)imitrescu, Th. :

(Referenced by L.

!!)52, p. 330)

5. (; Salzman, J. A. and Masica, W. J. : "Experimental Investigation of Liquid

1)ropeilant Reorientation, ,, NASA TM D-3789, Jan 1957

5.7 Lockheed Missiles & Space Company, A Study of Liquid Propellant Behavior

During Periods of Varying Acceleration, LMSC-A874728, prepared for NASA

Manned Spacecraft Center, Houston, Texas, under NASA Contract NAS 9-5174.

29 Apr 1967

"Zeitschr fur Angew" Math. u. Mech., Vol. 23, 1943, p. 139.

Prandtl in Essentials of Fluid Dynamics, Hafner, New York

5-14

LOCKHEED MISSILES & SPACE cOMPANY



LMSC-A874831

,.Q.

0
Z

,,,1,-1 _c_

i

iI1
0

ul
o
o
0

0

"0
o_,,I

!

5-15

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A874a,2 !

_r _
o

r

Figure 5-2 Liquid Reorientation in a Propellant Tank

5-16

i CJCKHEED MISSILES & SPA(:.E C() M_AI''_Y



LMSC-A874831

Z

r

v

Figure 5-3 Geometry for Liquid Reorientation in a Flat-Bottomed Cylinder
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Section 6

PASSIVE LIQUID RETENTION

INTRODUCTION

This section is concerned with the discussion and analysis of passive propellant reten-

tion systems. The fundamental theory governing the operation of such systems will be

derived and discussed together with various aspects affecting the proper operation of a

passive retention system.

The considerations of this section shall be limited to "passive" propellant retention

systems. These are devices having no moving parts which rely for operation on a

combination of container geometry and propellant capillary properties (surface tension,

density and wetting characteristics) to accomplish the positioning and retention of pro-

pellant masses in the presence of upsetting body forces due to vehicle maneuvers.

Thus, excluded from consideration are those propellant management systems employing

bladders, bellows, pistons, ullage rockets, valves, and dielectrophoretic forces. Al-

though for certain specific applications a positive expulsion device such as a bladder or

bellows may be more desirable, in general, the above listed system share in varying

degrees the disadvantages of large system weights, higher part count (and hence lower

reliability), and material compatibility problems with rocket propellants currently

employed. This is particularly true when these systems are employed in large pro-

pellant tanks for booster and upper stage vehicles. With the increased understanding

of the behavior of capillary systems, passive retention systems for spacecraft have

become accepted as the most generally desirable means of controlling propellant

location. Reference (6.1) reports the results of a survey of most of the techniques

employed for liquid propellant control and expulsion including those active systems

listed above. The advantages and disadvantages of these systems are discussed.

Those interested are referred to this source for more information regarding positive

expulsion techniques.
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The basic function of a spacecraft propellant retention system is to position all or a

part of the liquid propellant in a partially filled tank at the tank outlet and supply pro-

pellant on demand to the propulsion system (or to another tank in the case of a

resupply tanker operation). This must be accomplished in the presence of the vehicle

acceleration environment during its mission. Vehicle accelerations result from such

sources as attitude control thrust, aerodynamic drag, secondary propulsion systems

operation, docking, crew movements, solar pressure, gravity gradients, etc. The

table below lists rough order of magnitudes for these accelerations for a typical

vehicle mass of approximately 20,000 Ibm.

Source (Not Orbit Dependent)

Attitude control, RCS, etc.

Centripetal due to roll rates

(L -- 4 ft)

a/g o

-3
10

-6
10

Source (Orbit Dependent)

Aerodynamic drag

-9
Radiation pressure 1 x 10

-14
Centripetal due to orbital rate 4 x 10

-15
Gravity gradient 8 x 10

Sun Earth Moon

-6
lx 10

-6 -7
10 7 x 10

-5 -7
3x 10 lx 10

Because of the inertia of the propellants, the vehicle accelerations result in a body

force tending to move the liquid mass relative to the tank. If motion is to be pre-

vented this body force must be opposed by some other force of equal magnitude.

In this case, that force is produced by the surface tension at the liquid-gas interface,

often referred to as a capillary force.
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CAPILLARY STABILIZED SYSTEMS

Pressure Supported Systems

Reynolds (6.2) has proposed the terms "pressure supported" and "capillary supported"

to describe two classes or modes of the stabilization of liquid masses in containers

against gravitational forces by the action of surface tension forces. The first of these

concepts can be illustrated with aid of the diagram of a tank partially filled with liquid

shown in Fig. 6-1(a). If the tank is accelerated in the y direction normal to the

static equilibrium liquid-gas surface with magnitude _ , the entire mass of liquid

tends to "fall" away from its original position to the other end of the tank much like a

piston. The retention of this mass in its original position is dependent on two criterion.

One is the balance of forces on the liquid in the y direction. Thus:

Z F = 0 for static y equilibrium
Y

R,

pg_R 2 - _Jpol-- h(r)dr - p_ (y) _R 2 = 0
0 y=0

or

R

ifpg - p_ = R2 p_h(r)dr
0

This criterion should be considered in cases where pg approaches the propellant

vapor pressure such that the permissible value of pg - p_ approaches zero. For

storable propellant systems this is generally of secondary importance relative

the following consideration. The term "pressure supported" is derived from this

consideration.
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The other criterion in this case is concerned with the relative ability of surface tension

to prevent the unstable growth of a deformation of the liquid-gas interface which would

allow an exchange of liquid and gas across the equilibrium surface location. The

criterion is stated in terms of the Bond number B for interface stability. This subject

is discussed in Section 4 and will not therefore be repeated here. Propellant mass and

tank geometry combinations satisfying the above two conditions are said to "stabilized

in the pressure supported sense. "

Capillary Supported Systems

In most instances, however, the net acceleration vector of a propellant tank is not

always directed in the manner stated above but will either have a component parallel

to the liquid surface or will be directed entirely normal to the axis of symmetry of the

(,quilibrium surface. This is illustrated in Figure 6-1a by the acceleration vector ft.

In this case, the stabilization of the liquid is in the capillary supported sense. The

hydrostatic pressure variation across the tank diameter, pfi (2R) , is counterbalanced

by a surface tension force associated with the distortion of the interface shape.

Analysis of this mode due to its asymmetry and nonlinearity has not yielded a stability

criterion. Experimentation reported in Reference 6.3, however, indicates a Bond

number stability limit for right circular cylindrical tanks with no internal hardware,

thus

- P/3R2 < i
B I stable cr

for transverse acceleration components in clean tanks.

Since the locational stability of liquid masses in both of the above cases is largely

governed by the stability of the liquid-gas interface which in turn is highly dependent

on the characteristic container dimension, L , the technique most generally employed

is to reduce this dimension. This can be accomplished with little loss in tank flow area
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by placing a screen grid or perforated plate surface at the liquid-gas interface

position. This stabilization surface is illustrated in Figure 6-lb. For the liquid at

this screen grid surface, the characteristic dimension L now becomes r which is

much smaller than R, resulting in interfacial stability to much higher acceleration

levels.

For the pressure supported capillary stabilized surface

2

B[ _ par <- 0.8
stable

in each screen or perforated plate opening where r is the effective hole radius.

Again, since in most cases all or a component of the net acceleration vector will be

parallel to all or some portion of a stabilization surface, attention will be turned to the

stability criterion for this case. This criterion is a form of capillary supported

stability and can be illustrated as follows.

Consider a container enclosing a mass of liquid that has a density, p , and surface

tension, _ , against the surrounding gas as shown in Figure 6-2. The local accelera

tion, fl , acts in the direction shown. On one side of the container at its extreme top

and bottom a distance, h , apart are located holes of radius r. The hole radius is

small compared to the local hydrostatic pressure variation so that the liquid-gas

interface can be considered spherical with radius R (i. e. ,hole Bond number.

< 0.1). The system contact angle is indicated as _ Writing the pressure
O"

drops across the curved liquid-gas interface at the upper and lower holes in accordance

with the Laplace relations where _1 and _2 are the principle radii of curvature of the

liquid-gas interface.

Po - Pa = a + - (6.1)

a
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where

4) = 9) (contact angle, contact angle hysteresis, containment surface

geometry).

(6. s)

A theoretical upper limit for the value of 4, for circular holes is 4 since this

represents one full bubble pressure based on hole radius at the top and one full drop

pressure at the bottom based on hole radius. This amounts to an inverstion of watting

between holes and is, of course, difficult to obtain in a practical situation. In this line

of thinking, for a perfectly wetting combination (O = 0) a 4, value of 2 would

indicate one "bubble pressure" based on hole radius with no aid to continament fur-

nished by the "lower" holes. In (6.7) it is understood that the distance h must be

measured parallel to the direction of fl and be the maximum wetted distance along

this line of action.

Experiment reported in Reference (6.4) show that 4, is a weak function of the param-

eters indicated in equation (6.8) varying between 1.5 and 3.5. For the purposes of

setting an unconditional stability limit then, the following would apply:

pfirh
(Y

< 1 (6.9)

The above stability limit consideration was also reported by Jetter (6.5) and

verified by a series of experiments.

CAPILLARY SUPPORTED RETENTION SYSTEM DYNAMIC BEHAVIOR

Retention System Refill

During the operation of passive retention system, the volume within the system may

become partially emptied of liquid. This can occur as the result of an acceleration

exceeding one of the above stability limits allowing pressurant gas to enter the volume
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/

Pb - Po = (::_-- + ,'--_-/ - 2a
R b\-1 -%

(6.2)

the hydrostatic pressure difference between holes is

Pb - Pa = pflh (6.3)

combining (6.1), (6.2), and (6.3) yields

PflRa - 2
o"

(6.4)

From the geometry of the liquid-gas interface in the upper hole

r = R a cos 0 (6.5)

Pflrh = 2( c°s0a + R---b)
(6.6)

The development of an analytical relation beyond this point is dependent on more

explicit knowledge of the detailed influence of hole geometry including burns and

other edge deformities, contact angle, and contact angle hysteresis on the shape and

size of the liquid gas interface in the containment surface holes. Rather than attempt

this, all the known parameters can be grouped on the left hand side of the equation as

was done in (6.6) leaving those aspects about which accurate assumptions cannot be

made to the right hand side as a nondimensional constant for the particular system,

a constant which can be examined experimentally. Thus, we may write:

flT/_-rh
• (6.7)
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in exchange for the loss of liquid or by necessity and design as during an engine startup

sequence. This is illustrated in Figure 6-3. Shown in (a) is a partially empty pro-

pellant tank containing a simple propellant retention device consisting of a perforated

metal sheet spanning the tank above the outlet enclosing a volume bounded by the tank

walls and the retention surface. The main body of propellant has been disoriented

previously and is located at the opposite end of the tank, leaving one side of the con-

tainment surface in partial or total contact with the pressurant gas. Engine restart

(Figure 6-3b) results in a withdrawal of propellant from the retention volume. As it

takes a finite time for the propellants to arrive at the drain end under the resulting

vehicle acceleration, (_ , pressurant gas is drawn into the retention volume. The main

body of propellants then arrive and begin flow past the retention surface to meet the

engine demand (Figure 6-3c). The gas within the retention volume must be expelled

prior to the next engine start or the possibility exists that a portion of this gas will be

ingested at the subsequent restart causing engine malfunction.

As will be shown analytically below, once propellant is oriented so as to cover the

retention surface, a portion of this pressurization gas will remain trapped with the

retention volume (as in Figure 6-3c) unless provision is made in the system design to

vent this gas volume.

Refill Under Engine Thrust

Consider Figure 6-4 which is a diagram of a portion of a passive propellant retention

system such as might be employed at the drain. As the reorienting propellant

approaches the retention system, the liquid level inside retention volume is at some

initial height h i greater than the final height hf with pressurant above it at Po pressure.

The flow rate, w , to the engine will, of course, be very much less than the propellant

flow entering retention system region. Thus, h. will begin to diminish as the1

propellant level rises. Due to the large propellant flow rate outside the retention

surface, this surface will become quickly submerged. The level in the retention

volume will continue to rise until the gas pressure in the retention system is Pv '
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where

Pv = Po + pa(H + hf)

and

hf = hc + hL

for h measured down from the retention system top to be reduced below hf, gas would

have to be expelled past the retention surface against the capillary bubble pressure Pc"

We may define

APc
h -

o ap

This an another form of the capillary supported stability criterion.

aph r
O

= 2
ff

Therefore

h -
o apr

Flow thru the retention surface results in a pressure loss which is reflected as an

additional head differential h L relative to the pressure outside the surface.

Thus,

2
P v s

h L = C L 2g c
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where

v is propellant velocity in the retention surface holess

C L a loss coefficient, in general C L _ 1.2, and

gc is the conversion factor from mass to force units.

The above consideration illustrates the fact that pressurant gas drawn into a passive

rcicntion system is not expelled when the exterior portion of retention surface

becomes wet. Note particularly that retention surfaces normal to vehicle thrust axis

having no value for hf are particularly poor from this standpoint since at all points

along the surface the liquid pressure in the exterior exceeds the interior trapped gas

pressure.

Means for eliminating or reducing the trapped volume include configuring the retention

surface so as to vent to main ullage pressure, or configuring the containment surface

so the volume associated with the entrapment height, hf, is small. A conical

retention surface shape is an example of the latter. These are illustrated in Figure

6-5.

R(,fill Under Capillary Forces

The refill considerations above apply to those conditions resulting in the submergence

of a retention system by the bulk of the propellant. If the retention system is large

enough or the propellant level in the tanks low enough his may not occur. If this

condition results in a portion of the retention surface becoming dry, allowing gas

pressure communication between gas in the retention volume and the ullage pressurant

gas, then, during a period of zero or low gravity, the retention system can refill

itself under the action of surface tension forces if properly designed. This is illu-

strated in Figure 6-6 which shows a representative retention system placed over the

tank drain consisting of a right circular cylinder with a screen mesh connecting the

base to the tank wall closed off across the top by another screen mesh. The propellant

is assumed to wet the tank materials perfectly (i.e. , contact angle near zero). In
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(a) the retention system is partially full. The gas in the reservoir has pressure com-

munication to the ullage pressurant via the screen at the top. Following a reduction of

the acceleration level such as at main engine shut off, the propellant interfaces interior

and exterior to retention system will assume the characteristic capillary dominated

curved interface shape. From the Laplace relation we can determine the pressure

change across each interface as a function of the surface curvature:

For the retention system

Po - P2 = (r +--
_2

20"

2

For the tank

PO
-Pl = (r _2

Noting that

2_1 = R- r

and that,2, (the other principal radius of curvature for this annular meniscus, )is very

large so that

1
_ "_0

we have

Po - Pl = 2_(_-_1r)
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combining the above to eliminate Po yields

Pl - P2 = 2( lr R - r1 )

In the absence of a vehicle acceleration, the above relation states that the propellant

will flow into the retention system in response to the capillary pressure difference if

1 1
>

r R-r

in the local region of the retention system.

Considering the effect of a small axial acceleration component, _ , that produces a

hydrostatic pressure variation, we write

Pl - P2 = p_ (h2 - hl)

For complete system refill by capillary action in the presence of a positive accelera-

tion, c_ ,

A p (capillary) -> A p (hydrostatic)

or

1 1
2G (r R- r ) -pa (h 2 - hl)

setting (h 2 - h 1) = H
max.

where H is the height of the retention system, we have

for complete capillary refill.

< 2G 1 1 ) (6.10)
- p--H(r R - r
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The rate of system refill is a function of the driving forces on the liquid mass and

the dissipative forces, all of which are strongly dependent on the particular system

geometry. The transient process of retention system refill can be expressed in

terms of a differential equation in refill height, h, derived from Newton's Second

Law thus:

FCA P + FHYDR O - FDISSIP = m(t) h(t)

FCA P is the force due to the capillary pressure differential and is a function of tank

and retention system geometry, system wetting characteristics and surface tension.

FCA P = f(ff, 0, R, r)

Acceleration induced body forces, FHYDRO, are dependent on the propellant

density, p , local acceleration, c_ , and height differences, h.

FDISSIPATIV E is a function of the propellant velocity, 4, flow area ratio and

geometry and propellant viscosity p.

The propellant mass, m(t), engaged in the system refill will be time varying in

value, being a function of h.

The comments above point out the essential aspects of retention system refill under

surface tension and small body forces. Details of a partincular system design

must be considered in applying these in an analysis. Siegel (6.6) discusses these

aspects in an analysis and experimental investigation of a simple capillary system.

Partial or Total Propellant Retention

Retention system design depends on whether it is necessary to control with the pas-

sive system all or a specific smaller volume of the propellants. An important con-

sideration in this case is the stability criterion for capillary supported systems,
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O"
1 for unconditional stability,

sil_c,: upse_fi:_ ,_ccelcrations other than those aligned with the thrust axis will occur

and must be considered. The two alternatives are illustrated in Figure 6-7. In order

to l_t _I, the g ro,_s retention system dimension "h" at a low value so that the per-

missable upsetting acceleration may remain large, total propellant control generally

results in large retention system surface areas and weights relative to the tank weight.

h, this regard, total retention of all remaining propellant is not attractive for large

pr()pell;mt tanks, but may be acceptable for smaller tank sizes associated with attitude

control ,)r secondary propulsion systems.

The ,_pproach with partial propellant control is to retain at the tank outlet sufficient

pro} ,o,llant to assure engine start and settling of the bulk of the propellant. This pro-

vidcs a minimum volumetric requirement for the retention system in order to prevent

prcssurant gas entering the engine feed line.

_ [ = V + V + V + Vr.f.,'. s. min s.t. s p.t.

V
r.s.

s.t.

V
S

V
p.t.

V
r.f.

= propellant volume to be retained

--- volume required for engine start transient

= volume required to settlebulk of propellant

= volume required to provide a liquidlevel el,eve the drain

to prevent "pull-through" or suction dip

: volume associated with any inabilityto completely refill

the system.

'i'hc ab(:vc b_'c_tkdown is somewhat arbitrary but provides a list of those aspects which

must be considered in m analysis of a partial retention system.
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J

The engine start transient is characterized by propellant withdrawal from the retention

volume under low gravity conditions building up to rated thrust and high acceleration

condition. This volume of propellant is that necessary to fill passages downstream of

valves, thrust chamber fuel or oxidizer leads, turbine flow (for pump fed engines), etc.,

and is dependent upon the particular engine system. Also, since the flow occurs initi-

ally under very low gravity conditions, the tendency for pressurant pull-through (or

suction dip) is extreme. Thus, the tendency of the propellant surface to follow large

velocity potential gradients in the absence of gravity potential gradients must be con-

sidered in the shape of the retention system.

Depending upon such factors as tank shape and internal hardware geometry, fill level,

and reorientation Bond number, a finite amount of time is required for the wave front

of the bulk propellant to arrive at the retention system. During this period the addi-

tional propellant volume V s is withdrawn from that in the retention system.

Just prior to the start of refill of the retention system by the reorienting propellant,

the propellant level in the system may be low, thus placing the interface close to the

tank outlet. Under these conditions, pull-through or suction dip is again possible.

The volume of propellant, Vp.t. ' is that which then cannot be drained or scavenged

from the tank bottom, but must be provided to prevent pull-through.

Finally, due to the considerations discussed above regarding refill, it may not be

possible with a particular design to completely refill the retention system following the

initial engine restart with deoriented propellants and volume Vr. f. must be provided

to prevent propellant depletion in the retention system during a subsequent start.

CONCLUSIONS

This section has presented those considerations and design criteria generally essential

to the analysis and design of a passive propellant retention system. Summarized,

these are:
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. Interfaeial Stability, Pressure Supported:

pgR2 <-- .0.8 _- 4_.
4_I ' 2

for most common tank geometries and propellants

2. Interracial Stability, Capillary Supported:

pgrh < _,1 c 4) < 3
(Y

3. Retention System Refill

4. Volume Size for Partial Retention System

Beyond these fundamental considerations the particular configuration of a passive

propellant retention system is highly dependent on the specific mission and vehicle

system to which this technique is applied. In this respect, it must be emphasized

that no particular passive retention system is the best for all applications. In view

of a general desire to minimize system weight and design complexity, however, a

partial retention system is more suitable than a total retention system. This approach

results in a small retention system size, making it possible to provide a design stable

under a wide variety of upsetting acceleration levels as well as resulting in minimum

vehicle weight increments.
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(a) TOTAL RETENTION
g

(b) PARTIAL RETENTION

Figure 6-7 Total and Partial Capillary Retention Systems
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Section 7

LOW-G PROPELLANT TANK DRAINING PROBLEMS

Increasingly sophisticated space missions have already required that liquidpropellants

be supplied to rocket motors under reduced gravitationalconditions. To date, mvst

such situationshave occurred during the use of small or secondary propulsion sys-

tems. These devices are normally characterized by small totalimpulse (and, there-

fore, small tanks) and by low propellant-flow rates. The most expedient solutionhas

been to positively expel propellants from small tanks, using bladders or diaphragms

in the tanks.

The draining of large tanks, however, presents problems of much greater magnitude.

Bladders or bellows add considerably to the weight of large tanks (at least in theory,

since no large tanks have yet been built utilizingsuch systems). Further, the reliability

of such devices greatly reduces their attractiveness ifonly from the part count view-

point.

The advent of space exploration will require operation of propulsion systems fed from

large tanks. The great size of many projected space vehicle systems probably will

result in the operation of such systems under reduced gravitational conditions. Further,

some contemplated missions envision transfer of propellants or other liquids from a

tanker to a receiver in space under near zero-g conditions. It can be expected that such

operations will produce special problems, or, at least, will aggravate situations met

under more familiar high-g conditions.

Two problems may be expected in conjunction with the draining of tanks under low-g

conditions: vortex formation and pressurant blow-through. The first problem presents

a familiar phenomenon, occurring during the draining of almost any container of liquid.

The second is not found in very many everyday situations, but only those in which tanks

are drained very rapidly and in which vortex formation is somehow avoided. These

two problems will be discussed in turn.
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VORTEX PROBLEMS IN LOW-G

The vortexing of liquids in propellant tanks is of great importance, if only because

vortexes must be avoided at all costs. Maintenance of engine thrust-level and possibly

the engine mixture ratio are dependent on being able to drain the propellant tanks in a

predictable manner. This is certainly not possible ifvortexes appear during the

draining process. A serious vortex motion will result in a depression of the liquid

surface over the tank drain to the extent that gas actually enters the drain. When this

occurs, the flow cross-section of the drain for liquid is reduced and the liquid flow rate

is lowered.

One of the major difficulties encountered in the vortexing problem is that analysis is

of littlehelp. Most ofthe palliatives have been developed empirically; experiments have

also developed most of the information about vortexing in propellant tanks.

From a qualitative standpoint, vortexes appear eventually if there is some residual

circulation in the liquid in the tank. The practical impossibility of avoiding some cir-

culation means that vortexing is always possible. Further, the inception of a vortex is

not at all predictable. Experimental observation (7. i) indicate certain general trends

about the probability of vortexing. These trends include the following:

• The probability of vortex formation increases with the magnitude of liquid

circulation at the start of the draining process and the time to vortex inception

is reduced.

• The probability of vortex formation is strongly influenced by tank shape. For

example, vortexes form more readily in conical than in flat bottomed tanks.

• Off-center drains reduce the severity of vortex motion. A vortex may start

but may also be swept away by the circumferential motion of the liquid.

The net result of all this is that corrective appliances must be installed in the tank

bottom. Some studies have been undertaken to determine the best types of vortex

suppressors. The exact choice should be made on the basis of model tests in the tank

in question. The choice cannot be made until tank development is started. It may be

said, however, that cruciform baffles installed over the drain are effective in reducing
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vortex formation and severity. Horizontal baffles located over the drain are also

effective. Both types can be made of perforated material or screens as a means of

weight minimization.

The foregoing treatment has said nothing about vortex formation under reduced gravita-

tional conditions. In order to make some judgement about the similarities and differences

between vortexing under reduced-g and normal, high-g conditions, we may examine the

Euler equations of motion in polar cylindrical coordinates. This is justifiable because

vortex motion can be considered to be irrotational except in a central rotation core.

The equations in the r , 0 , and z coordinates are as follows.

2
Du

u0r = _l_p +__
Dt par 2

D(ru 0 )
= 0

Dt

Du

z 10p
D"'_ = paz - g

(7.1)

where

D
Dt

P

- 0-_+ u r + ru r_-_+ Uz_- _

is the pressure

p is the liquid density

q is the local body force per unit mass

The only difference between application of these equations in a low-g condition compared

to more normal high-g conditions is found in the equation for the z direction.

There is nothing the r and 0 direction equations to indicate that a vortex would

start more quickly under reduced-g conditions. Once started, though, it is clear from
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the z-equation that the amplitude of the resulting free-surface disturbance would result

in a different flow pattern in the tank.

Ii' it is true that anti-vortex devices are required under high-g conditions, it is obviously

doubly true under reduced-g conditions.

PRE SSURANT BLOWTHROUGH PROBLE MS

Pressurant blow-through (also termed suction dip or pull-through), the second of the

major problems associated with tank draining, is characterized by a collapse of the free-

surface of the liquid over the tank drain. It is aggravated by high drain rates and is

worse when the liquid level in the tank is low. It goes almost without saying that

pressurant blow-through happens only if vortexing can be avoided. If a large percentage

of the propellant contained in a tank must be drained, vortexing must first be avoided,

then steps can be taken to minimize pressurant blow-through.

Here, too, analysis has been of only marginal help. Although an apparently straight-

forward initial value problem can be formulated to describe tank draining, it has only

been applied to tanks of very simple geometry (i. e. fiat bottomed cylinders); further,

too little experience has been accumulated in analysis of this problem. However,

analysis, has given the important dimensionless modelling parameters required for

experimental investigation of the problem: the Froude (Fr = V2/Rg) and Bond

(pg R2/o -) numbers.

Rather than outline the initial value problem indicated earlier, it is more instructive to

indicate the derivation of a simple expression which predicts the critical depth at which

blow-through occurs. It is expected that inertial forces play an important role in

determining when blow-through occurs. This is best illustrated by a simple analysis

of the quasi-steady-state flow in the relatively flat region near the drain of a tank (not

at all necessarily a flat bottomed tank).

The purpose of this analysis is to establish an engineering criteria including the inllu-

ence of surface tension on the draining of a propellant tank. The analysis of Lubin and

Hurwitz (7.2) is extended to include surface forces. The analysis is necessarily
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approximate to preserve a measure of simplicity, but the results seem to be physically

reasonable. Further, the high-g limit has been experimentally verified. Consider

the layer of liquid over the drain as shown in Figure 7-1, Bernoulli's equation is applied

to the surface streamline in the vicinity of the tank drain.

2
U

O

P_I + pgh = P01 + pgho + p7 (7.2)

Poo2 = P02 (7.3)

Substracting (7.2) and (7.3) gives

2
U

O

Poo2 - P_2 - pgh = P02 - P01 - P gh O - P-_- (7.4)

Application of the steady-state Bernoulli equation implies the assumption that velocities

are not changing with time. This assumption is justified by the fact that the rate of

fall of the free-surface toward the drain is small compared to the liquid velocity over

the lip of the drain- at least until blow-through occurs.

The pressure difference between liquid and vapor is given by

P2 - Pl = aJ (7.5)

where _ is the surface tension and J is the local surface curvature. Approximations

to the curvature are necessary in view of the complex geometry. This point is treated

in detail later.

The use of the hemispherical control volume yields better results when the liquid height

is away from the drain. The hemisphere (see Figure 7-1) is constructed such that the
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chord at the "dip" region has a length equal to the drain radius. This is arbitrary but

serves the purpose. Fluid mechanically the hemisphere supplies a control surface more

nearly orthogonal to the streamlines for application of mass conservation. The vol-

umetric flowrate Q into the drain expressed in terms of the fluid velocity in the dip

region becomes

Q = Uo 2Vho_h2 + r 2o (7.6)

which gives

__ _ Q2+ _ (7.7)

h = h ° Pg(J_ J°) + 4_2 h2o h + r ° (2g)

when substituted into (7.4).

At this point the criteria for blow-through is taken for mathematical purposes, to be

dh = 0 (7.8)
dh

o

(This is not precise but physically represents the fact that the level h

slower than the level h at the onset of blow-through. )
o

moves much

Before (7.8) can be applied to (7.7), an expression for the curvature in terms of the

quantities h and h ° is necessary. To reduce the geometry to such a simple relation

is an assumption but does seem to have some physical implication. The role of sur-

face tension is a passive one until the surface starts to dip. At this point, the local

curvature is increased giving the surface forces a chance to restore the system to

minimum potential energy. Thus, the onset of a depression in the surface leads to a

restoring force as a result of surface tension. This is no different from the case where

the gravitational forces attempt to keep the system at a minimum potential energy shape

by bringing more liquidto the drain region as the surface depresses in draining.
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At these points away from the dip region, the curvature is given by

2
J _

_o R (7.9)

where R is the tank radius. This is only an order of magnitude estimate. Using

this value as a reference, the curvature at the dip region is approximated by

1 1
J _ +

o R - £(h - ho) R - c(h - ho)
(7.10)

where _ ~ 1 and relates the curvature to the characteristic length h - h o

part of the problem. Taking c = 1 , it follows that

for this

[2 2 ](_(J¢o - Jo ) _ a _ - R - (h - ho)

_ 2 (h - ho) ]
(7.11)

This expression is adequate for establishing criteria on the important dimensionless

groups.

If (7.11) is applied to (7.4) and (7.8), there results

h = h +
0

_2

8g_2h2( h2+o r2)[ 1+ 2p_]

(7.12)
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This equation is suitable for applying the blow-through criterion, (7.8). The blow-

through condition is,*

,)

Q-

5 (1 + 2/B)g h c

4n 2 (1 + o_2) 2

2)[ (1 + a2) ] 5
(2 + a 1 + 2 (2 + oz2)

(7.13)

where a = ro/h c and B = pgR2/a

Two important limiting cases may be obtained from this. When the critical height is

much greater than the drain radius (a << 1)

Q2

h 5 (1 + 2/B)g c

= 6.5 (7.14)

and when the drain radius is much greater than the critical height (a >> 1)

Q2
: 19\/-hc-g h5 (1 + 2/B)

c

(7.15)

These last two equations can be put in a possibly more familiar form by relating flow
2

rate Q to the liquid flowrate in the drain, e.g., Q = _rr oV d.

When this is done, Equation (7.14) becomes, for high g:

= 1.5 Vd

\ro/ r o g

(7.14a)

*The critical height hoc , over the drain has been replaced by h c , the critical height

away from the drain.
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and for zero g:

ro/
= 0.76

PVd_ r° (_oo) 2 (7.14b)

Similarly, Equation 7.15 becomes, for high-g:

ro/
= 1.9_

2
V d

r g
o

(7.15a)

and for low-g:

to/
= 0.95

2 2

PVd r° (_o) (7.15b)

where V d is the liquid velocity in the drain pipe,

tank radius.

r ° the drain radius, and R the

Others have presented experimental results or arguments related to the critical depth

h c or critical draining velocity under zero-g conditions.

Gluck, et al (7" 3) report that experimental data indicates blow-through occurs under

high-g conditions when the following Frande number condition is satisfied.

[ ( ro)9 he 0.86 tanh 1.3 Vm

r o
(7.16)

where V m is the mean velocity of the free-surface.
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Reynolds (7.4) has suggested a critical draining velocity for zero-g

2

ovd,- _ i0 (7.17)
Wemax o-

where D is the tank diameter, d the drain diameter, V d liquid velocity in the drain,

p the liquid density, and _ the surface tension of the liquid. Experiments reported

IJyDerdul et. al. (7.5) indicate that this expression is of the correct form but that the

limit should be lower because when

pV D

- < 0.4 (7.18)
Wemax

the meniscus in a draining tank in zero-g suffers negligible distortion.

All ol the expression for gravity dominated draining indicated in this section are plotted

in Figure 7-2. Equations (7.14a) and (7.16) have been tested in certain ranges by

exl)c riments.

The expressions appropriate for zero-g draining are not plotted, but itcan be observed

from (7.17) and (7.18) that small drain rates are required if enormous trapped residuals

are to be avoided. For example, Wemax = p Vd/a _ 30 x 104 for R/r ° = 30. If

the criterion set by (7.18) is exceeded by even one order of magnitude, the ullage gas

will punch through the liquid leaving the tank walls covered with a thick layer of liquid.

Even further, as the meniscus approaches the drain, flow rates must be even further

reduced. According to (7.14b), for example, if hc/r ° is to be limited to 1 , the

2 ro/_r must be about 0. 0013 for normal tank/drain geometry\Veber number W e = p V d

2 D/_ be about 0.1.
(R/r ° _ 30) which requires that W e = P V d
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At least when the tank Bond number is large, blow-through results from high liquid

velocities in the vicinity of the tank drain. This suggests that increasing drain diam-

eter will help delay blow-through. The use of a baffle over the drain has also been

suggested as a means of reducing the critical depth and thence the quantity of liquid

trapped in the tank.

The insertion of a baffle over the drain region of a tank changes the flow patterns in

such a way that the kinetic energy for the downward flow is distributed more evenly

over the tank area. Consequently, the inertial forces are reduced and one expects

that the critical height for the initiation of pull-through is reduced.

Figure 7-3 is a sketch for the flow problem. The baffle is viewed as a flat plate with an

annular cut-out of width 5 . The diameter of the drain region is denoted by Db .

Other configurations can be analyzed in an identical fashion.

As in the previous development, Bernoulli's equation is applied to the free streamline,

2
U

O

pgh = p gh ° + p _- (7.19)

where surface tension is neglected for the moment. The hemispherical control volume

over the drain for applying mass conservation is impractical here except for the case

where liquid is close to the baffle, say, h _ 55. Consequently, the control surface

sketched in Figure 7-3 is adopted.

The flowrate through the baffle is

I + _ + 5)hoiQ = u o _ D b h o (D b

u ° (Tr ho) (2D b + 5) (7.20)
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which gives

Q2
h = h +

o 2zr2 g h2o (2DB + 5)2

(7.21)

when substituted into (7.22).

Applying the blow-through criterion, dh/dh = 0 gives
O

Q2

2(g 113 D b 1 +
2 D b

= 4re 2 _ 40 (7.22)

which is compared with the case where the baffle is absent.

When this is cast into the form of the equations compared in Figure 7-2 (Equations

7.14a, 7-15a, and 7.16), there results

(hc/3 2= 0.062 v (ro/R)2

\ro] g ro (1 - 36/4R) 2
(7.23)

This is also plotted (for the particular case R/r = 30, It/6 = 10) in Figure 7-2 as a
o

comparison with the nonbaffle formulas. Clearly, a device such as this is of considerable

help in reducing trapped residuals in rocket propellant tanks.
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Section 8

HEAT TRANSFER TO SUBCOOLED PROPELLANTS

Rocket propulsion systems are subject to a wide variety of maladies which stem from

improper temperature control of propellants or improper control over the flux of

energy to or from the propellants. A few of these maladies are:

• Tank overpressure caused by too high a propellant temperature.

• Mixture ratio imbalance, especially in pressure-fed systems, caused by

improper balance of temperature between propellant tanks.

• Gas generator malfunction due to poor propellant flow characteristics

attributed, in turn, to the temperature imbalance.

• Propellant freezing.

• Propellant sludging or separation caused by poor temperature control,

especially where the propellant is a mixture of two or more compounds

• Excess boiloff of cryogenic propellants

• Venting problems especially in cryogenic tanks under reduced-g conditions.

• Nonoptimal operation of pressurization system resulting from thermal

stratification.

It is for these and a host of other problems that an understanding of heat transfer to

and within propellant tanks is required.

Heat transfer and temperature control problems in space-borne rocket propellant

tanks may be divided conveniently into two major classes depending on whether the

propellant is space-storable or a cryogen. For these purposes, a space-storable

propellant is one which, on the average, may be in thermal equilibrium with its

environment, and a cryogenic propellant is one which may not. Cryogens, in this

sense, are liquids whose temperatures are much lower than can be achieved by so-

called passive temperature control techniques. The heat transfer and temperature

control problem peculiar to each type of propellant will be discussed in turn.

8-1

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A87483 [

HEAT TRANSFER IN STORABLE PROPELLANTS

In general, spacecraft, their tanks included, receive short wavelength thermal energy

directly from the sun and reflected from other bodies such as the earth. They also

receive longer wavelength thermal energy radiated from neighboring bodies (as the earth)

by virtue of their temperature. Spacecraft, of course, reject thermal energy by radi-

ation. Broadly stated, it is possible, through control the the absorptive and emissive

properties of external surfaces of a spacecraft, to control its temperature.

An unprotected propellant tank may easily experience 150°F temperature variations

from point-to-point and from time-to-time each orbit. Such temperature variations

can give rise to motion of the liquids within storable propellant tanks and, for this

reason, require discussion. Even further, the motions induced can affect the tem-

perature distribution within the tank.

Very little specific work regarding the energy transport mechanisms acting within

propellant tanks under low gravitational conditions has been accomplished. Assump-

tions valid under 1-g conditions might not be useful when the gravity level is reduced.

The purpose of the following discussion is to illustrate the effects produced by the

most likely energy transport mechanisms. It is hoped that this will aid the user in

adapting other examples to cases of interest in the design of spacecraft propellant

tanks.

The first energy transport mechanism requiring discussion is natural convection. The

large temperature variations in the temperature of a tank wall would, under high-g

conditions result in considerable natural convection inside the tank- in both the liquid

and gas volumes. Under low-g conditions, natural convection will be much reduced,

but not necessarily negligible. The dimensionless parameter governing the strength of

the natural convection energy transport mechanism is the Rayleigh number.

Ra = gflL3AT pC
2 k

p
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where fl is the volumetric coefficient of thermal expansion, v , the kinematic

viscosity, _ the dynamic viscosity, k the thermal conductivity, c the specific heat,

and L the characteristic length for the system.

The Rayleigh number is as shown above, the product of the Grashoff number and the

Prandtl number. The latter is a property of the fluid and does not vary widely among

most liquids of interest. Thus, the Rayleigh number changes as the Grashoff number.

In the context of heat transfer calculation for spacecraft propellants, the significant

variation in the value of the Rayleigh number result from variation of g level, con-

tainer size (or wetted tank length), and kinematic viscosity.

Natural convection within a propellant tank is more complicated than in other situations.

The mechanism gives rise to important temperature nonuniformities inside the tank

which complicate the use of standard natural convection heat transfer correlations. For

example, the liquid in a container heated by the sun on one side and cooled on the other

by radiation to space will circulate in a pattern resembling that shown in Figure 8-1a

(assuming that the liquid is located as shown). Clearly, application of standard cor-

relations is difficult, but in the absence of very specialized experiments or analysis,

there is little choice.

The situation shown in Figure 8-1b is somewhat more complicated. When the heating

takes place vertically as shown in this illustration, natural convection does not always

occur. If the Rayleigh number based on tank radius is less than a critical value,

natural convection circulation patterns doe not occur. Rayleigh numbers on the order

of 500 to 2000 are required before circulation takes place.

The second energy transport mechanism of importance is associated with mass

diffusion inside the tank. Consider the illustration shown in figure 8-2a. The tank

shown has a thin layer at the hot end. The liquid will evaporate, its vapor will diffuse

through the pressurizing gas filling the tank and will condense at the colder end of the

tank. This process, of course, implies energy transport from the warm end to the
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colder end. The diffusion process is expressed by rate equations drawn from Fick's

law for diffusion plus the principle of conservation of mass for each species together

with the rate equation for thermal energy. Theory is best obtained from texts such as

that of Bird, Stewart, and Lightfoo_ 8" 1)

Formulation of a problem of this sort is not difficult, but obtaining the solution is quite

complicated unless the geometry is very simple. Further, natural convection in the

gas can be induced by concentration gradients in the propellant vapor and ullage gas.

This results from the fact that propellant vapors are usually very heavy compared to

helium gas, the normal pressurant in storable propellant tanks.

A single example of the solution of the diffusion equations is offered. Consider the

geometry in Figure 8-2b. A long thin tank is equipped with a capillary liquid locating

device made from a porous material such as screen material. The ends are shown

insulated (as would occur effectively by locating the tank between equipment sections

at the same temperature as the propellants in the tank). Should the spacecraft now be

shadowed from the sun, the tank wall will quickly cool causing evaporation of liquid

from the standpipe, diffusion to the tank wall and condensation thereon.

The geometry shown in Figure 8-2 can be idealized as a cylinder with flat ends with

all the liquid located along the tank axis such that the diffusion process is entirely

radial. Solution of the governing equations for this case are approximately.

_n-P--

P2XB1 \XB1/ _n--

Pl

(8.3)

_vhere ×B is the mole fraction of helium gas with subscripts 1 and 2 denoting the

appropriate value of x B at the standpipe and at the tank wall where the propellant

vapor is saturated at temperatures T 1 and T 2 .

The molar flow of propellant vapor per unit length of cylinder is obtained from Fick's

law
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JA = -2u r
e DAB d x A

1 - x A dr

In XB----2

XB1

= 2_e DAB r2
In --

r 1

- 2_r
CDAB dx B

x B dr
(8.4)

where c is the concentration of the mixture.

and tank geometry sizes are

DAB -- DHe _ N20 4

T 1 = 70 ° F

T 2 = 40 ° F

r 1 = 1/2 ft

r 2 = 2 ft

Typical values for physical constants

~ 4.0 x 10 -4 ft2/sec

The computed molar flow per unit length of tank is JA = 9.7 lbm/hr. The approxi-

mate energy flow rate is given by

E = JA _gA

where hfg A is the latent heat of vaporization of the propellant. For the example,

E 2000 btu/hr for a tank 10 ft long. Even this moderate energy rate would tend

to quickly cool the quantity of liquid held by the capillary retention standpipe. Reduc-

tion in total tank pressure would increase the importance of this mechanism.
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The third mechanism for moving liquid propellants within their tanks involves the

interaction of surface tension and temperature. The surface tension of liquids is a

decreasing function of temperature, and disappears altogether at the critical point.

Variation in the temperature of the free liquid surface gives rise to variations in the

surface tension. This, in turn, results in a shear condition on the free surface.

This is illustrated by the liquid layer shown in Figure 8-3. This problem is taken

from the text by Landau and Lifshitz (8.2). Here, the temperature of the surface

on which the liquid lies is nonuniform. K the layer is thin enough, the liquid temper-

ature will not be a function of y and will have the same variation in x as does the

underlying surface. The fluid pressure is

P = Po + pg(h-y)

where Po is the atmospheric pressure. The variation in pressure due to surface

curvature can be neglected in this case. Considering that the fluid velocity is always

parallel to the x axis, the Navier Stokes equation in the x direction may be used to

determine the thickness of the layer as a function of x .

# 2 ax = g d-_ (ph) -y
aY

subject to the boundary conditions at y = 0

u (x , o) = 0

and at y = h

8u (x, h) = do"
_x dx
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This equation may be integrated to obtain

d 1 _ y2 dp da_u = gy(h-_)_(ph)-_gy(Uh 2 ) - ydx

For steady flow, the quantity of liquid passing a given section is zero

(8.1)

h

udy = 0

o

Substitution of (8.1) here gives

pd2h_ lh 2dp _ 1 dcr
3dx2 + 4 dx gdx

which, when integrated assuming only small variations in a and p

pgh o

with x

Note that the coefficient to the last term is the inverse of a Bond number based on

liquid layer depth. For small Bond numbers, the variation can be great (to the extent

of invalidating all the simplifying assumptions used).

Neglecting, for the moment, the fact that surface driven flows actually move liquids

around within their tanks, it may be desirable to determine the effect of surface ten-

sion variation on the location of liquids in a tank. Here again, it is necessary to

restrict attention to a specialized geometry, but one that is less special than that used

in the previous example. Consider a small quantity of liquid located in a toroidal

volume about the tank bottom. When the tank temperature is uniform, the liquid will

8-7

LOCKHEED MISSILES & SPACE COMPANY



LMSC -A874 831

be uniformly distributed as shown by the solid curves. Assuming that the liquid temper-

is a function only of angular location around the tank, the effect of temperature varia-

tions on liquid location can be estimated. The pressure in the liquid must be constant,

otherwise a net flow of liquid will occur. The pressure in the liquid is given by

p = Pg - GJ = Pg- G +

where J is the curvature of the free surface and r 1 and r 2 are the principle radii

of curvature of this meniscus. Assuming that these are approximately as shown in

Figure 8-4. it is seen that variations in the free-surface curvature for this meniscus

stem largely from variations in r 1 . Equating liquid pressure at hot and cold locations,

there obtains

_rHot °'Cold 1,1
Hot Cold

and if the surface tension at the two locations is given by

dG

= Gmean dT (T + AT)

and if r and r are both reasonably close to r
1Hot 1Cold 1mean

Ar I

r I
me an

do- A._T_T

It is instruclive to examine a numberical example: Propellant tanks of a typical

space vehicle suffer a 150 ° F temperature difference from hot side to cold. Small
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quantities of liquid remaining in a tank of the same geometry as shown in Figure 8-4

result in r 1 ~ 1/2 ft . The mean surface tension is typically 35 dynes/em, and I d_/

dT I about 0.1 dyne/cm -° C. Thus

Ar I
= 0.12 ft

r 1
me an

Thus, this temperature variation can increase the radius r. from 6 inches to about
1

7.5 inches on the cold side and reduce r 1 to 4.5 inches on the cold side. When it is

recognized that the cross sectional area of the toroidal liquid volume varies approxi-

mately as the square of r 1 it can be seen that much of the liquid has been displaced

toward the cold side of the propellant tank as in Figure 8-4.

HEAT TRANSFER IN CRYOGENIC PROPELLANTS

The temperature of cryogenic propellants are, as indicated, always below the lowest

available temperature of external surfaces of the spacecraft. Consequently, heat is

continuously transferred from the environment to the propellants through insulation

and fixtures of a well designed cryogenic propellant tank. On the face of it, it might

be assumed logically that the heat transfer to cryogenic propellants could be accurately

estimated, and thus, for example, the pressure rise rate in the tank could be esti-

mated as accurately. The first part of this is true to an acceptable degree, but it is

not nearly as possible to accurately predict the pressure rise rate. The reason for

this is that the pressure rise rate is influenced by the nonuniformity of temperatures

within the liquid propellant and the gas or gases which fill the ullage volume in the

tank. This nonuniformity makes it risky, at best, to use relations obtained from

classical thermodynamics based on the assumption of thermodynamic equilibrium

within the tank. The nature of the nonuniformity within the tank must therefore be

examined in some detail. Consider the cylindrical tank shown in Figure 8-5. Here it

is assumed that the heat being transferred to the tank enters only through the cylindrical
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wall of the tank (this assumption will be examined a little later). A straightforward

quasi-steady state analysis can be constructed which adequately described the state of

temperature nonuniformity within the tank based upon the assumption that all the heat

entering the tank is entrained in a natural convection boundary layer which carries it

toward the free-surface where it remains permanently in a stratified layer adjacent

to the ullage space. Tellep and Harper (8.3) have presented such an analysis in the

open literature and this has been amplified by Levy, et. al (8.4) They have used an

integral boundary layer analysis to predict stratification within cryogenic propellant

tanks. The basis idea is to write an expression for the rate of mass transfer toward

the stratified layer at the free-surface. This is easily accomplished, because the mass

fh)w rate in natural convection boundary layers may be obtained as a by-product of the

standard analysis for predicting the natural convection heat transfer coefficients. This

type of analysis can be used to predict the rate of growth of the stratified layer near

the free-surface. The following relation has been obtained for laminar natural

convection:

= 1- 1 - 0.62
Gr* 1/3 ]

+5

This applies when the Prandtl number lies between 1 and 30 and when A(t) -<_tt .

A corresponding relation is obtained for turbulent situations

It
H _t pr-2/3 Gr

1+ 0.092 _ _-_/ +0.443 Pr 2/

-7

In these relations, the Grashoff number has been defined as
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so that it is expressed in terms of the heat flux through the tank wall q rather than in

terms of the temperature difference between the tank wall and the bulk liquid.

The dividing line between laminar and turbulent regimes occurs when the modified

Rayleigh number is in the neighborhood of 1011 .

Ra* = (Gr*)Pr

The method suggested here is superior for most practical situations than the more

elegant method of finite differencing the continuity, momentum, and energy equations

and solving them numerically as an boundary-initial value problem. The utility of

this method is limited to laminar situations and the computer time required for a

solution which has been reported (8.5) appears excessive considering the accuracy

of the more approximate method when compared with available experimental data.

Neither the integral-boundary layer analysis or the finite difference method predict the

heat transfer situation within storable propellant tanks. The rate of growth of the

stratified layer is so great that the whole liquid volume should be considered as a

single lump rather than a stratified layer.

In the development of the relations just presented, it was assumed that the heat

transfer to the tank occurred solely through the cylindrical wall of the tank. Heat

transfer through the bottom of the tank can be easily superimposed on the foregoing

results because bottom heating usually results in a mixing action. The heated liquid

at the bottom of the tank is unstable if the Rayleigh number as previously defined

exceeds 2000. The temperature distribution can be thus considered to be that pre-

dicted by the relationships for stratification resulting from sidewall heating added to

the bulk temperature rise easily computed using the bottom heating alone.

Analyses of the types mentioned above are frequently adequate to evaluate a propellant

tank-storage design. Where more definitive models are required, or possibly addi-

tional empirical data, these approaches can be useful in placing the problem in some

perspective.
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Figure 8-5 Geometry -- Natural Convection Stabilization in a Cryogenic
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Section 9

LOW GRAVITY TESTING

As in other subjects, low gravity experimentation provides information that aids in

three ways toward the understanding of a particular phenomena. Experimental simu-

lation under controlled conditions can provide insight that serves as a guide to analysis.

Having an analytic description of the phenomena, experimentation can then be used to

check the validity of the predictions and the analytic model. Finally, in those in-

stances where analytic tools are not available, experimental correlations in terms of

modeling parameters that exhibit at least the gross characteristics of the particular

phenomena can often be obtained. Aside from the obvious necessity to study liquid

behavior at zero or low gravity this environment can also be used to condition the test

liquid for an environment which is gravity dominated and in a full scale situation

follows or precedes a period of low or zero gravity.

SIMILARITY

The proper modeling of a low gravity condition depends on the attainment of geometric

and dynamic similitude between the model and the full scale prototype. Dynamic simi-

litude is obtained by duplicating in the model the ratio of the forces governing the fluid

behavior. These dimensionless force ratios become the governing parameters of the

experiment. The essence of zero- or low-gravity testing is the attainment of a proper

balance between weak interfacial tension forces, acceleration-induced body forces,

inertia forces and viscous forces. The dimensionless ratio expressing the balance

between surface tension forces and acceleration induced body forces is the Bond

number written as (Pl - P2 ) gL2/a where P2 is the density of the upper fluid,

Pl the density of the lower fluid, a the interfacial tension between the fluids, g

the local acceleration, and L an appropriate container dimension.
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In the case of spacecraft propellant tanks, the density of the upper fluid, being a gas,

is significantly less than that for the lower fluid and is neglected in writing the Bond

number. The Weber number We, expresses the ratio of the liquid inertia forces

present to the surface tension forces and is written as

We = PV2L
ff

where V is the characteristic fluid velocity, and L a characteristic dimension.

Finally the Reynolds number expresses the balance between the inertial forces in the

liquid and viscous forces. Simulation of low gravity phenomena also requires that the

contact angle between the test liquid and the container be maintained between the

prototype and the model. For most spacecraft applications the contact angle between

the propellant and the tank wall is very low, being 5 ° or less.

It is not generally possible to provide similarity in all of the areas above. Although a

variation in fluid properties can be obtained by selecting a particular test liquid to

provide simulation, the range of properties obtainable is not large when one is restricted

to test liquids that can be handled in the laboratory and that have good wetting character-

istics, i.e., low contact angle with the model containers. Generally, simulation of the

Bond number is of primary interest. However, if the prototype Bond number is signifi-

cantly low (Bo > _ 0.01) exact duplication from the prototype to the model is not

necessary. In the range 100 > Bo > 0.01, care should be taken to maintain Bond

number simulation. Similarly in those situations involving fluid inertia maintenance of

Weber number between model and prototype in the range 100 > We > 0.01 is probably

necessary. It is not generally possible with common test liquids to meet the require-

ments of Bond number and Weber number simulation and also satisfy Reynolds number

simulation. Since most phenomena in large scale spacecraft propellant tanks are not

viscous dominated it is sufficient in model testing to provide Reynolds numbers in the

turbulent range.
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The response time of the model relative to the prototype depends upon whether the

phenomena is gravity or capillary dominated. In a gravity dominated regime

(Bo > 10) time scaling is proportional to _]g. For capillary dominated regimes

response is proportionate to _/L 3 pig . The above time scaling considerations are

of particular importance in experiment design which will be discussed below.

TEST TECHNIQUES

The general techniques for providing or simulating a low gravity environment fall into

two broad categories: bench tests at standard gravity conditions, and tests at reduced

gravity conditions. Consideration of the Bond number indicates that characteristic

dimension has a significant effect on the size and that a reduction in Bond number can

be obtained even under standard gravity conditions by sufficiently reducing the size of

the experiment. For example, suppose we are interested in studying the sloshing

frequencies of a propellant in a large tank at 10 -4 go " The dimensionless frequency,

_2 = c0 Vpr--W-/-_, in the absence of viscous effects is a function only of the Bond number.

The Bond number will be maintained in a bench test in 1/100 scale model if a test

liquid is employed having a value of a/p equal to that of the prototype. If the general

size of the prototype is of the order of 10 meters the model size is sufficiently large

to be manageable. Generally, however, bench testing requires model sizes so small

that goemetric similitude, contact angle maintenance and viscous effects become

problems.

Since the form of the Bond number considers the effect of the density of a fluid above

the interface, simulation of surface tension dominated phenomena can be obtained at

standard gravity by replacing the gas with an immiscible liquid of nearly equal density

to the liquid simulating the prototype. In this manner the hydrostatic pressure dif-

ference across the interface between the two liquids is reduced and the Bond number

becomes a function of the density difference. For a given Bond number condition in

this case the size of the experiment is limited by the density difference that can be

measured and maintained in a test. Density differences of the order 10 -4 gm/cc can

be accurately measured using an analytic balance and a pycnometer. Measurement of

9-3

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A874831

differences as low as 10-6 gm/cc by measuring the drift rate of a drop of one liquid in

the other in a Stokes flow regime appears feasible. Major drawbacks of this test

technique are concerned with the practical problem of simulating the low contact angle

required and the introduction of viscous effects duc to the upper liquid.

Testing at reduced gravities is accomplished in three ways: drop tower, aircraft, and

orbital flights. Of these three by far the most useful tool in terms of economy, avail-

ability, and test control is the drop tower. Appro×imate If'st time can be calculated

with relation below.

T = 0.248 _-_

where h is measured in feet and T in seconds.

A test module encapsulated within a drag shield is usually employed. The drag shield,

by virtue of its mass, is relatively unaffected by air drag. The test module is usually

not attached to the drag bhield and remains free to travel in a relatively drag free

environment provided by tile low relative velocity between the drag shield and the test

module. Tlle test module usually contains all of the test conditioning and measuring

t,quipment. Test accelc'rations can be provided by applying a small force to the test

module during free fall. To accomplish this such techniques as connecting the drag

shield and the test module with constant force type springs have been employed. A small

cold gas thrust system mounted on the test module provides the most flexibility. Such

a system allows the experimenter to easily vary acceleration lewd from one test to

another by changing the thrust system output as well as to vary the thrust initiation time

anti its duration during the free fall test period.

Test times in the drop tower are restricted by limitations associated with the drop

tower height. A 100 ft. of free fall seems to be the practical compromise for a drop

tower. This allows 2-1/2 seconds of test time. The small additional time obtained

in towers with longer free, fall distances is purchased at the expense of increased
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problems associated with catching and arresting the drag shield and test module, and

the increased effects of air drag.

Reduced gravity conditions can also be provided in an aircraft executing a Keplerian

trajectory. In this method of free fall, testing times of the order of 32 seconds are

theoretically possible with a jet transport type aircraft. Test capsules free floating

in the aircraft cabin isolate the experiment from the aircraft. Because of the extended

test times experiments of larger scale than those in drop towers are possible. However,

aircraft testing has drawbacks. It is difficult for the pilot to keep the aircraft on pre-

cise trajectory required within the limits of the aircraft size. Thus collisions between

the test module and the aircraft occur reducing the test time. This type of maneuver

places large stress loadings on the aircraft and the costs per flight are high. Finally,

the maneuvers of the aircraft prior to entering the Keplerian trajectory generate a

great deal of agitation in the test liquid, reducing the control over the initial condition

of the test.

Tests conducted on orbit offer the greatest opportunity for extended times in a zero or

low gravity environment and in the future this will become the primary mode of testing.

From a practical standpoint these tests should be conducted on manned orbital flights

to reduce the problems associated with data recovery and remote test control.

EXPERIMENT DESIGN CONSIDERATIONS

The design of tests in a reduced gravity environment is primarily dependent upon the

available test time. The time scaling considerations discussed earlier together with

the properties of the test fluid provided an upper limit on the size of the simulated pro-

pellant tank. For example, suppose we desire to conduct a drop tower test composed

of an initial period T 1 of zero gravity followed by a period of propellant motion T 2

at some low gravity condition. Further, suppose that we are performing a test in the

drop tower in which three seconds is the available test time. The capillary response

time for the reorientation liquids from the flat initial condition to the zero g condition
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under capillary forces can be estimated from the relation T =

where

D

K

T

= container diameter

= ratio of kinematic surface tension to density

= 0.17

= period for 1/4 cycle of surface oscillation.

K (D3/fi)1/2

Allowing 3/4 of a cycle to obtain relative stable equilibrium we have

T 1 ¥--

The gravity dominated behavior to be studied following this period is scaled with

the relation

=

Combining these two relations we now have

T1 + T2 = 0.51 _3-_ + 1.4 _L-_ _= 3

This together with the ratio of container length to diameter L/D sizes the test for a

particular g level. If we desire to conduct a test with a liquid having fl = 30 cm3/sec 2

and an acceleration level of 10 -2 go in a container of 2.5-cm radius the above ex-

pression indicates that the container length L should be 14.3 cm.

Since the major portion of the information obtained from a low gravity test is obtained

visually, generally on motion picture film, attention should be given to proper lighting

in the design of the experiment. For most tests for which information about the inter-

face shape and trajectory is desired, diffuse back lighting of the experiment with

respect to the camera viewing axis usually provides excellent results in terms of

contrast.
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In many tests measurement of the level of acceleration is also desired. An economical

technique for sensing acceleration level is to employ a bearing ball in an enclosed con-

tainer. The trajectory of the ball provides an indication of the direction and level of

acceleration. This technique is accurate within 10 percent for acceleration levels

down to 10 -2 go" Below this acceleration level, accurate measurements become

uneconomical. Acceleration information can also be obtained from calibrations of

the spring force or thrust system employed on the test module.
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